68. 2-nd Microlocalization and Conical Refraction

By Nobuyuki Tose

Department of Mathematics, Faculty of Science, Ehime University (Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1986)

§ 1. Introduction. The phenomenon of conical refraction has long been observed by physicists. It is attributed to the non-uniformity of multiplicities to Maxwell equation in the crystal and studied in the framework of Microlocal Analysis by Melrose-Uhlmann [8] and P. Laubin [5], [6].

We employ the theory of 2-microlocalization developed by M. Kashiwara and Y. Laurent (see [2], [4]) and gain a new insight about the phenomenon.

Explicitly, let P be a microdifferential operator defined in a neighborhood of $\rho_0 \in \sqrt{-1}\mathring{T}^*R^n$, which satisfies the following conditions.

- (1) P has a real principal symbol p.
- Let $\Sigma_1 = \{ \rho \in \sqrt{-1} T^* \mathbf{R}^n ; p(\rho) = 0 \}$ and $\Sigma_2 = \{ \rho \in \Sigma_1 ; dp(\rho) = 0 \}$.
- (2) Σ_2 is a regular involutory submanifold in $\sqrt{-1}T^*R^n$ through ρ_0 of codimension $d \ge 3$.
- (3) Hess $p(\rho)$ has rank d with positivity 1 if $\rho \in \Sigma_2$. Moreover we assume
- (4) P has regular singularities along Σ_2^c in the sense of Kashiwara-Oshima [3], where Σ_2^c denotes a complexification of Σ_2 in T^*C^n .

Our main interest is the propagation of singularities on Σ_2 for the equation Pu=0, which can be transformed by a quantized contact transformation into

(5)
$$P_0 u = \left(D_1^2 - \sum_{i,j=2}^d A^{ij}(x,D)D_iD_j + (lower)\right)u = 0.$$

defined in a neighborhood of $\rho_1 = (0, \sqrt{-1}dx_n)$. Here A^{ij} are of order 0 with $(\sigma(A^{ij}))$ positive definite. We remark that in this case $\Sigma_2 = \{(x, \sqrt{-1}\xi); \xi_1 = \cdots = \xi_d = 0\}$ and that P_0 has regular singularities along Σ_2^c .

We study (5) 2-microlocally along Σ_2 . After transforming (5) by a quantized homogeneous bicanonical transformation, which is wider than quantized contact transformations, we give the canonical form of (5) as $D_1u=0$. Then we can easily obtain a theorem about the propagation of 2-microlocal singularities.

§ 2. Notation. Let X be a complex manifold and Λ be a regular involutory submanifold of T^*X . Λ is embedded naturally into $\Lambda \times \Lambda$. $\tilde{\Lambda}$ denotes the union of all bicharacteristics of $\Lambda \times \Lambda$ that pass through Λ . $\mathcal{E}_{\Lambda}^{2,\infty}$ is the sheaf on $T_{\Lambda}^*\tilde{\Lambda}$ of 2-microdifferential operators constructed by Y. Laurent [4].

Let M be a real analytic manifold whose complexification is X. Σ denotes a regular involutory submanifold of T_M^*X , whose complexification