67. On the Generators of Exponentially Bounded C-semigroups

By Isao MIYADERA Department of Mathematics, Waseda University

(Communicated by Kôsaku YOSIDA, M. J. A., Sept. 12, 1986)

1. Introduction. Let X be a Banach space, and let $C: X \to X$ be an injective bounded linear operator with dense range. According to Davies and Pang [1], we say that $\{S(t): t \ge 0\}$ is an *exponentially bounded C-semi*group if $S(t): X \to X$, $0 \le t < \infty$, is a family of bounded linear operators satisfying

(1.1) S(t+s)C = S(t)S(s) for $t, s \ge 0$, and S(0) = C,

(1.2) for every $x \in X$, S(t)x is continuous in $t \ge 0$,

Т

(1.3) there exist $M \ge 0$ and real a such that $||S(t)|| \le Me^{at}$ for $t \ge 0$.

For every $t \ge 0$, let T(t) be the closed linear operator defined by

$$U(t)x = C^{-1}S(t)x \quad \text{for } x \in D(T(t))$$

with $D(T(t)) = \{x \in X : S(t)x \in R(C)\}$. We define the operator G by $D(G) = \{x \in R(C) : \lim_{t \to 0^+} (T(t)x - x)/t \text{ exists}\}$

and

(1.4)
$$Gx = \lim_{t \to 0^+} (T(t)x - x)/t$$
 for $x \in D(G)$.

For every $\lambda > a$, define the bounded linear operator $L_{\lambda}: X \rightarrow X$ by

(1.5)
$$L_{\lambda}x = \int_{0}^{\infty} e^{-\lambda t} S(t)x \, dt \qquad \text{for } x \in X.$$

It is known that L_{λ} is injective and the closed linear operator Z defined by (1.6) $Zx = L_{\lambda}^{-1}(\lambda L_{\lambda} - C)x = (\lambda - L_{\lambda}^{-1}C)x$ for $x \in D(Z)$

with $D(Z) = \{x \in X : Cx \in R(L_{\lambda})\}$ is independent of $\lambda > a$. (See [1].) The operator Z will be called the generator of $\{S(t) : t \ge 0\}$.

Remark. If C=I (the identity on X), then every exponentially bounded C-semigroup is a C_0 -semigroup in the ordinary sense. In this case, (1.1) and (1.2) imply (1.3), and the generator Z coincides with G defined by (1.4) (see [2, 3]). However, these do not hold in general (see [1]).

The purpose of this paper is to prove the following theorems.

Theorem 1. Let $\{S(t):t\geq 0\}$ be an exponentially bounded C-semigroup satisfying $||S(t)|| \leq Me^{at}$, and let G be the operator defined by (1.4). Then G is closable and \overline{G} (the closure of G) is a densely defined linear operator in X satisfying the following conditions

- (a₁) $\lambda \overline{G}$ is injective for $\lambda > a$,
- (a₂) $D((\lambda \overline{G})^{-n}) \supset R(C)$ for $n \ge 1$ and $\lambda > a$,
- (a₃) $\|(\lambda \overline{G})^{-n}C\| \leq M/(\lambda a)^n$ for $n \geq 1$ and $\lambda > a$,
- (a₄) $(\lambda \overline{G})^{-1}Cx = C(\lambda \overline{G})^{-1}x$ for $x \in D((\lambda \overline{G})^{-1})$ and $\lambda > a$.

Theorem 2. If T is a densely defined closed linear operator in X

239