65. Characterizations of P^3 and Hyperquadrics Q^3 in P^4

By Iku NAKAMURA

Department of Mathematics, Hokkaido University

(Communicated by Kunihiko KODAIRA, M. J. A., June 10, 1986)

Introduction. A compact complex threefold is called a Moishezon threefold if it has three algebraically independent meromorphic functions on it. The main consequences we report are

(0.1) Theorem. Let X be a compact complex threefold or a complete irreducible nonsingular algebraic threefold defined over an algebraically closed field of arbitrary characteristic. Assume Pic X=ZL, $H^1(X, \mathcal{O}_X)=0$, $K_X=-dL$, $d \ge 4$ (resp. d=3), $L^3>0$, and that $h^0(X, mL) \ge 2$ for some positive integer m. Then X is isomorphic to projective space P^3 (resp. a non-singular hyperquadric Q^3 in P^4).

(0.2) Theorem. A compact complex threefold homeomorphic to \mathbf{P}^{3} (resp. \mathbf{Q}^{3}) is isomorphic to \mathbf{P}^{3} (resp. \mathbf{Q}^{3}) if $H^{q}(X, \mathcal{O}_{X})=0$ for any q>0 and if $h^{0}(X, -mK_{X})\geq 2$ for some positive integer m.

(0.3) Theorem. A Moishezon threefold homeomorphic to P^3 (resp. Q^3) is isomorphic to P^3 (resp. Q^3) if its Kodaira dimension is less than three.

(0.4) Theorem. An arbitrary complex analytic (global) deformation of P^3 (resp. Q^3) is isomorphic to P^3 (resp. Q^3).

The theorems (0.2)-(0.4) are derived from (0.1), see section 3. The theorems (0.2)-(0.4) in arbitrary dimension have been proved by Hirzebruch-Kodaira [3] and Yau [14] (resp. by Brieskorn [1]) under the assumption that the manifold is Kählerian. See [2], [5], [6] for related results. Recently Tsuji [12] claims that he is able to prove the theorem (0.4) for P^n , whereas Peternell [9] asserts the theorems (0.3) and (0.4) in a stronger form. However there is a gap in the proof of [9], as Peternell himself admits at the end of the article. After the author completed [7] and the major parts of [8], he received two preprints of Peternell [10], [11] in which Peternell completes the proof in [9] of the theorems (0.3) and (0.4) assuming no conditions on Kodaira dimension.

In [7], [8], we make an approach different from theirs and give an elementary proof of the above theorems. Our idea of the proof of (0.1) is as follows. First we see $h^{0}(X, L) > 2$ and then take two distinct members D, D' of the linear system |L|. We determine all the possible structures of the scheme-theoretic complete intersection $l=D \cap D'$. From this we easily see that $L^{3}=1$ (resp. 2), $h^{0}(X, L)=4$ (resp. 5), and that |L| is base point free. Moreover we see that the morphism associated with |L| is an isomorphism of X onto P^{3} (resp. Q^{3}).

§1. Proof of (0.1)—the case of projective space P^3 . In this section