61. Class Number Relations of Algebraic Tori. I

By Shin-ichi KATAYAMA

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., June 10, 1986)

Let k be an algebraic number field of finite degree and \mathfrak{p} be a place of k. We denote by $k_{\mathfrak{p}}$ the completion of k at the place \mathfrak{p} . $O_{\mathfrak{p}}$ denotes the ring of \mathfrak{p} -adic integers when \mathfrak{p} is non-archimedean, and $k_{\mathfrak{p}}$ when \mathfrak{p} is archimedean. Thus $U_k = \prod_{\mathfrak{p}} O_{\mathfrak{p}}^{\times}$ is a subgroup of the idele group k_A^{\times} . Let T be a torus defined over k and $\hat{T} = \operatorname{Hom}(T, G_m)$ be the character module of T. We denote by T(k) the group of k-rational points of T, and by $T(k_{\mathfrak{p}})$ the group of $k_{\mathfrak{p}}$ -rational points of T. $T(O_{\mathfrak{p}})$ denotes the unique maximal compact subgroup of $T(k_{\mathfrak{p}})$ when \mathfrak{p} is non-archimedean, and $T(k_{\mathfrak{p}})$ when \mathfrak{p} is archimedean. We put $T(U_k) = \prod_{\mathfrak{p}} T(O_{\mathfrak{p}}), T(O_k) = T(U_k) \cap T(k)$ and denote the adele group of T over k by $T(k_{\lambda})$. Then $T(U_k)$ is a subgroup of $T(k_{\lambda})$.

 $h(T) = [T(k_A) : T(k) \cdot T(U_k)].$

Consider the exact sequence of algebraic tori defined over k

(1) $0 \longrightarrow T' \xrightarrow{\alpha} T \xrightarrow{\mu} T'' \longrightarrow 0,$

where α and μ are defined over k.

Recently, T. Ono treated the case when $T = R_{K/k}(G_m)$ and $T'' = G_m$ in (1), where K is a finite Galois extension of k and $R_{K/k}$ is the Weil map. In his paper [3], he defined the number E(K/k) by $h(R_{K/k}(G_m))/h(T') \cdot h(G_m)$ and obtained an equality between E(K/k) and some elementary cohomological invariants of K/k in [4], [5].

In this paper, we shall obtain a similar equality between $h(T)/h(T') \cdot h(T'')$ and some cohomological invariants. Moreover, we shall define a number E'(K/k) for any finite Galois extension K/k and investigate the relation between E(K/k) and E'(K/k).

The author would like to express his hearty thanks to Prof. T. Ono who kindly suggested to him the definition and the importance of the number E'(K/k).

Let A, B be commutative groups and λ be a homomorphism from A to B. If Ker λ , Cok λ are finite, we define the q-symbol of λ by $q(\lambda) = [\operatorname{Cok} \lambda] / [\operatorname{Ker} \lambda]$. Let $\lambda: T \to T'$ be a k-isogeny of algebraic tori. Then λ induces the following natural homomorphisms

$$\hat{\lambda}(k) : \hat{T}'(k) \longrightarrow \hat{T}(k),
\lambda(O_{\mathfrak{p}}) : T(O_{\mathfrak{p}}) \longrightarrow T'(O_{\mathfrak{p}}),
\lambda(O_k) : T(O_k) \longrightarrow T'(O_k).$$

Here $\hat{T}(k)$ denotes the submodule of \hat{T} consisting of rational characters defined over k. Then one knows