61. Class Number Relations of Algebraic Tori. I

By Shin-ichi Katayama
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., June 10, 1986)

Let k be an algebraic number field of finite degree and \mathfrak{p} be a place of k. We denote by k_{p} the completion of k at the place p. O_{p} denotes the ring of \mathfrak{p}-adic integers when \mathfrak{p} is non-archimedean, and $k_{\mathfrak{p}}$ when \mathfrak{p} is archimedean. Thus $U_{k}=\prod_{p} O_{p}^{\times}$is a subgroup of the idele group k_{A}^{\times}. Let T be a torus defined over k and $\hat{T}=\operatorname{Hom}\left(T, G_{m}\right)$ be the character module of T. We denote by $T(k)$ the group of k-rational points of T, and by $T\left(k_{p}\right)$ the group of k_{p}-rational points of $T . \quad T\left(O_{p}\right)$ denotes the unique maximal compact subgroup of $T\left(k_{p}\right)$ when \mathfrak{p} is non-archimedean, and $T\left(k_{p}\right)$ when \mathfrak{p} is archimedean. We put $T\left(U_{k}\right)=\prod_{p} T\left(O_{p}\right), T\left(O_{k}\right)=T\left(U_{k}\right) \cap T(k)$ and denote the adele group of T over k by $T\left(k_{A}\right)$. Then $T\left(U_{k}\right)$ is a subgroup of $T\left(k_{A}\right)$. The class number of T over k is defined by

$$
h(T)=\left[T\left(k_{A}\right): T(k) \cdot T\left(U_{k}\right)\right] .
$$

Consider the exact sequence of algebraic tori defined over k
(1)

$$
0 \longrightarrow T^{\prime} \xrightarrow{\alpha} T \xrightarrow{\mu} T^{\prime \prime} \longrightarrow 0,
$$

where α and μ are defined over k.
Recently, T. Ono treated the case when $T=R_{K / k}\left(G_{m}\right)$ and $T^{\prime \prime}=G_{m}$ in (1), where K is a finite Galois extension of k and $R_{K / k}$ is the Weil map. In his paper [3], he defined the number $E(K / k)$ by $h\left(R_{K / k}\left(G_{m}\right)\right) / h\left(T^{\prime}\right) \cdot h\left(G_{m}\right)$ and obtained an equality between $E(K / k)$ and some elementary cohomological invariants of K / k in [4], [5].

In this paper, we shall obtain a similar equality between $h(T) / h\left(T^{\prime}\right)$ - $h\left(T^{\prime \prime}\right)$ and some cohomological invariants. Moreover, we shall define a number $E^{\prime}(K / k)$ for any finite Galois extension K / k and investigate the relation between $E(K / k)$ and $E^{\prime}(K / k)$.

The author would like to express his hearty thanks to Prof. T. Ono who kindly suggested to him the definition and the importance of the number $E^{\prime}(K / k)$.

Let A, B be commutative groups and λ be a homomorphism from A to B. If $\operatorname{Ker} \lambda, \operatorname{Cok} \lambda$ are finite, we define the q-symbol of λ by $q(\lambda)=[\operatorname{Cok} \lambda]$ $/[\operatorname{Ker} \lambda]$. Let $\lambda: T \rightarrow T^{\prime}$ be a k-isogeny of algebraic tori. Then λ induces the following natural homomorphisms

$$
\begin{aligned}
& \hat{\lambda}(k): \hat{T}^{\prime}(k) \longrightarrow \hat{T}(k), \\
& \lambda\left(O_{p}\right): T\left(O_{p}\right) \longrightarrow T^{\prime}\left(O_{p}\right), \\
& \lambda\left(O_{k}\right): T\left(O_{k}\right) \longrightarrow T^{\prime}\left(O_{k}\right) .
\end{aligned}
$$

Here $\hat{T}(k)$ denotes the submodule of \hat{T} consisting of rational characters defined over k. Then one knows

