55. On Some Integral Invariants on Complex Manifolds. I

By Shigetoshi BANDO^{*)} and Toshiki MABUCHI^{**)}

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1986)

This note is a continuation of our preceding works (cf. Bando [1], Mabuchi [8]) and we here explain how Futaki invariants (cf. Futaki [5], Futaki and Morita [6]) are generalized and reinterpreted from our viewpoints. Most of the proofs down below are very sketchy and a complete account including the present results will be given in a separate paper [2].

(1) Fix an arbitrary compact complex r-dimensional connected manifold X. Let $G := \operatorname{Aut}(X)$ be the group of all holomorphic automorphisms of X and $G^{\circ} := \operatorname{Aut}^{\circ}(X)$ be its identity component. We denote by \mathcal{CV}_{X} the set of all volume forms Ω on X such that $\int_{X} \Omega = 1$. Now, to each pair $(\Omega', \Omega'') \in \mathcal{CV}_{X} \times \mathcal{CV}_{X}$, we associate the real number $N_{X}(\Omega', \Omega'') \in \mathbb{R}$ by

$$N_{X}(\Omega', \Omega'') := \int_{a}^{b} dt \int_{X} \{(\sqrt{-1}/2\pi)\bar{\partial}\partial \log(\Omega_{t})\}^{r} (\partial\Omega_{t}/\partial t)/\Omega_{t},$$

where $\{\Omega_t | a \leq t \leq b\}$ is an arbitrary piecewise smooth path in \mathcal{V}_x such that $\Omega_a = \Omega'$ and $\Omega_b = \Omega''$. Then by a result of Donaldson [4; Proposition 6] applied to the anti-canonical bundle K_x^{-1} of X, the number $N_x(\Omega', \Omega'')$ above is independent of the choice of the path $\{\Omega_t | a \leq t \leq b\}$ and therefore well-defined. Furthermore, N_x is G-invariant, i.e.,

 $N_x(g^*\Omega', g^*\Omega'') = N_x(\Omega', \Omega'')$ for all $g \in G$ and all $\Omega', \Omega'' \in \mathcal{O}_x$, and satisfies the 1-cocycle condition, i.e.,

(i) $N_x(\Omega', \Omega'') + N_x(\Omega'', \Omega') = 0$ and

(ii) $N_{\mathcal{X}}(\Omega, \Omega') + N_{\mathcal{X}}(\Omega', \Omega'') + N_{\mathcal{X}}(\Omega'', \Omega) = 0$,

for all $\Omega, \Omega', \Omega'' \in \mathcal{O}_x$. We now fix an arbitrary element Ω_0 of \mathcal{O}_x , and define a functional $\nu_x : \mathcal{O}_x \to \mathbf{R}$ by

$$\nu_{X}(\Omega):=N_{X}(\Omega_{0},\Omega), \qquad \Omega\in CV_{X}.$$

We moreover set

$$n_{X}(g) := \exp(\nu_{X}(g^{*}\Omega_{0})), \qquad g \in G.$$

Then the same argument as in $[8; \S 5]$ easily allows us to obtain :

Proposition A. (i) $n_x: G \to \mathbf{R}_+$ is a Lie group homomorphism which does not depend on the choice of Ω_0 , where \mathbf{R}_+ denotes the group of positive real numbers. In particular, n_x is trivial on [G, G].

(ii) Let $\lambda := c_1(X)^r[X]$. Then $\Omega \in \mathbb{CV}_X$ is a critical point of ν_X if and only if $\{(\sqrt{-1}/2\pi)\bar{\partial}\partial \log(\Omega)\}^r = \lambda \Omega$, i.e., $(\sqrt{-1}/2\pi)\bar{\partial}\partial \log(\Omega)$ is a (possibly indefinite) Einstein form.

^{*)} Mathematical Institute, Tohoku University.

^{**&#}x27; Max-Planck-Institut für Mathematik, Bonn, B.R.D. and College of General Education, Osaka University.