55. On Some Integral Invariants on Complex Manifolds. I

By Shigetoshi Bando*) and Toshiki Mabuchi**)

(Communicated by Kunihiko Kodaira, m. J. A., May 12, 1986)

This note is a continuation of our preceding works (cf. Bando [1], Mabuchi [8]) and we here explain how Futaki invariants (cf. Futaki [5], Futaki and Morita [6]) are generalized and reinterpreted from our viewpoints. Most of the proofs down below are very sketchy and a complete account including the present results will be given in a separate paper [2].
(I) Fix an arbitrary compact complex r-dimensional connected manifold X. Let $G:=$ Aut (X) be the group of all holomorphic automorphisms of X and $G^{0}:=\operatorname{Aut}^{0}(X)$ be its identity component. We denote by \mathcal{V}_{X} the set of all volume forms Ω on X such that $\int_{X} \Omega=1$. Now, to each pair $\left(\Omega^{\prime}, \Omega^{\prime \prime}\right) \in V_{X} \times V_{X}$, we associate the real number $N_{X}\left(\Omega^{\prime}, \Omega^{\prime \prime}\right) \in \boldsymbol{R}$ by

$$
N_{X}\left(\Omega^{\prime}, \Omega^{\prime \prime}\right):=\int_{a}^{b} d t \int_{X}\left\{(\sqrt{-1} / 2 \pi) \bar{\partial} \partial \log \left(\Omega_{t}\right)\right\}^{r}\left(\partial \Omega_{t} / \partial t\right) / \Omega_{t}
$$

where $\left\{\Omega_{t} \mid a \leqq t \leqq b\right\}$ is an arbitrary piecewise smooth path in $C V_{x}$ such that $\Omega_{a}=\Omega^{\prime}$ and $\Omega_{b}=\Omega^{\prime \prime}$. Then by a result of Donaldson [4; Proposition 6] applied to the anti-canonical bundle K_{X}^{-1} of X, the number $N_{X}\left(\Omega^{\prime}, \Omega^{\prime \prime}\right)$ above is independent of the choice of the path $\left\{\Omega_{t} \mid a \leqq t \leqq b\right\}$ and therefore welldefined. Furthermore, N_{x} is G-invariant, i.e.,

$$
N_{X}\left(g^{*} \Omega^{\prime}, g^{*} \Omega^{\prime \prime}\right)=N_{X}\left(\Omega^{\prime}, \Omega^{\prime \prime}\right) \quad \text { for all } g \in G \text { and all } \Omega^{\prime}, \Omega^{\prime \prime} \in C V_{X}
$$

and satisfies the 1-cocycle condition, i.e.,
(i) $N_{X}\left(\Omega^{\prime}, \Omega^{\prime \prime}\right)+N_{X}\left(\Omega^{\prime \prime}, \Omega^{\prime}\right)=0$ and
(ii) $N_{X}\left(\Omega, \Omega^{\prime}\right)+N_{X}\left(\Omega^{\prime}, \Omega^{\prime \prime}\right)+N_{X}\left(\Omega^{\prime \prime}, \Omega\right)=0$,
for all $\Omega, \Omega^{\prime}, \Omega^{\prime \prime} \in \mathcal{V}_{x}$. We now fix an arbitrary element Ω_{0} of \mathcal{V}_{x}, and define a functional $\nu_{x}: \mathcal{V _ { x } \rightarrow R}$ by

$$
\nu_{X}(\Omega):=N_{X}\left(\Omega_{0}, \Omega\right), \quad \Omega \in \mathcal{V}_{X}
$$

We moreover set

$$
n_{x}(g):=\exp \left(\nu_{x}\left(g^{*} \Omega_{0}\right)\right), \quad g \in G
$$

Then the same argument as in [8; §5] easily allows us to obtain:
Proposition A. (i) $n_{X}: G \rightarrow \boldsymbol{R}_{+}$is a Lie group homomorphism which does not depend on the choice of Ω_{0}, where \boldsymbol{R}_{+}denotes the group of positive real numbers. In particular, n_{x} is trivial on $[G, G]$.
(ii) Let $\lambda:=c_{1}(X)^{r}[X]$. Then $\Omega \in C V_{x}$ is a critical point of ν_{x} if and only if $\{(\sqrt{-1} / 2 \pi) \bar{\partial} \partial \log (\Omega)\}^{r}=\lambda \Omega$, i.e., $(\sqrt{-1} / 2 \pi) \bar{\partial} \partial \log (\Omega)$ is a (possibly indefinite) Einstein form.

[^0]
[^0]: *) Mathematical Institute, Tohoku University.
 **) Max-Planck-Institut für Mathematik, Bonn, B.R.D. and College of General Education, Osaka University.

