43. A Note on the Mean Value of the Zeta and L-functions. III

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodaira, m. J. A., April 14, 1986)

1. In the present note we study the twelfth power moment of $L(1 / 2$ $+i t, \chi), \chi$ being primitive character $\bmod q$. We restrict ourselves to the case of prime q; this is mostly for the sake of simplicity (cf. Remark below).

We consider

$$
I=\int_{T-G}^{T+G}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{2} d t
$$

where
(1)

$$
q^{1 / 2} \leqq T, \quad(q T)^{\varepsilon} \leqq G \leqq(q T)^{1 / 3} l^{-1} \quad(l=\log q T)
$$

Using the function E_{1} introduced in [4], we have

$$
I \ll G l+\mid \int_{-\infty}^{\infty} E_{1}(T+t, \chi) t G^{-2} \exp \left(-(t / G)^{2}\right) d t
$$

Then following closely the argument of $[4, \S 2]$ one may show that for an $N \approx q T$

$$
\begin{aligned}
I \ll & G l+G^{-1}\left((q T)^{1 / 4}+q^{1 / 2}(q T)^{\varepsilon}\right) l \\
& +G \mid \sum_{n \leqq N} a(n, \chi) \int_{0}^{\infty}(y(y+1))^{-1 / 2} \cos (T \log (1+1 / y)) \\
& \times \exp \left(-2 \pi i n y / q-\frac{1}{4}(G \log (1+1 / y))^{2}\right) d y
\end{aligned}
$$

To estimate this sum over n, we divide it into two parts according to $q T G^{-2} l^{-2}<n \leqq N$ and $n \leqq q T G^{-2} l^{-2}$. To the integrals in the first sum we apply the second mean value theorem, and find that they are $<q l(n G)^{-1}$. Thus by [4, Lemma 5] we see that the first sum is $\ll q^{1 / 2} G^{-1} l^{3}$. On the other hand, to the integrals in the second sum we apply the saddle point method, and after overcoming somewhat lengthy computation we find that they are equal to

$$
\begin{aligned}
& \pi^{1 / 4} q^{1 / 2}\left(\pi n^{2}+2 q T n\right)^{-1 / 4} \\
& \quad \times \exp \left(-2 i T F\left(\frac{\pi n}{2 q T}\right)+\frac{\pi i n}{q}-\frac{\pi i}{4}-\left(G \sinh ^{-1}\left(\frac{\pi n}{2 q T}\right)\right)^{2}\right)+O\left((q / n T)^{1 / 2}\right)
\end{aligned}
$$

where

$$
F(x)=\sinh ^{-1}\left(x^{1 / 2}\right)+(x(x+1))^{1 / 2} .
$$

These error terms contribute to the sum the amount of $\ll q^{1 / 2} G^{-1} l^{2}$, because of [4, Lemma 5].

Collecting these and using partial summation, we get

