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1. Introduction. Let Y, be a closed orientable surface of genus g
and let M,==,Diff .2, be its mapping class group. Alsolet %, , and X, ,
respectively be the mapping class groups of Y, relative to the base point
xe X, and an embedded disc D*C¥,. It is known that these groups are
perfect for all g=>3 (see [2, 3]) and Harer determined the second homology
group of them in his fundamental paper [2]. The purpose of the present
note is to announce our results on the homology groups of them with coef-
ficients in the first homology group H,(2,, Z) of 3, on which the mapping
class groups act naturally.

2. Low dimensional homologies. First we consider the first homo-
logy. The results of our previous paper [7] imply

Theorem 1. (i) H,(M,; H(X,, Z)=Z|29—2 (9=2).

(i1) H(My5 H(Zy Z)=H(M, .« ; H(Z,, Z2))=Z (9=2).

These groups are detected by the crossed homomorphism f: %, .
X H(Y,, Z)—~Z defined in [7]. Next the second homology group is given
by the following Theorem which is one of our main results.

Theorem 2. (i) Hy(M; H(Y,, Z))=0 for all 9=12, where I stands
for any of My My, s 07 M,y

(ii) Hy(M; H(Y,, @))=0 for all g=9, where M is the same as above.

Corollary 3. HY(M,; H'(Z,, Z)=Z/29—2 (9=9).

The group H*M,; H'(,, Z)) has the following geometric meaning.
Choose a generator o € H*(,; H'(2,, Z)). To any oriented differentiable
Y ,-bundle = : E—X, we have associated in [8] a family of Jacobian mani-
folds #’:J’—X, which is a flat T*-bundle over X with structure group
H.(%, Z/29—2)xSp2g, Z), and a fibrewise embedding ;' : E—J’ which in-
duces an isomorphism on the first integral homology on each fibre (topolo-
gical version of Earle’s embedding theorem [1]). We have

Proposition 4 (compare with [1], §8). Let n:E—X be an oriented
Y ,~bundle. Then the associated family of Jacobian manifolds =’ :J'—X
has a cross-section if and only if h*(0) vanishes in H'(z(X); H'(Z,, Z))
where h: n(X)— M, is the holonomy homomorphism of the given 3 ,-bundle
and ©(X) acts on H'(X ,, Z) naturally.

Corollary 5. The natural homomorphism =: M, —H, induces an
isomorphism Hy (M, ., Z)=H(M,, Z) for all g=1C. (It is easy to show that
the homomorphism H( M, ., Z)—>H(M,, Z) is surjective for all g=3.)



