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1. Introduction and statement of results. Let (A}<< be a finite
family of complex affine hyperplanes in C and let . be a local system on
the complement X--C- U A. The vanishing of homology H(X, _),
]:/:n, for a "generic" local system . was treated by K. Aomoto [2] and
M. Kita-M. Noumi [7] from different points of view. The object of this
note is to give a simple criterion for such vanishing of homology and to
give a basis of H(X, _). We denote by f, 1 <]<m, a linear form with

Kerf--A and let A+ denote the hyperplane at infinity. We consider a
regular connection of the form 9==xPdlogf, P e End (V), where V
is a finite dimensional complex vector spaee. Let us observe that the con-
neetion/2 is integrable if and only if [P, P,+... +P]--O, 1 <,<q, for
any maximal family (A}<<q such that eodimc [A.. A]--2 (see [1]).
These relations are related to the lower central series of the fundamental
group of X (see [8], [9]). Let P+ denote the residue along A+. We have
P+.-. +P+=O.

Let us suppose that f2 is integrable in the ollowings. The connection
/2 is said to be generic with respect to the hyperplanes {A},+ if the
ollowing conditions are satisfied"
(1.1) ) Any eigenvalue of P,l<j<m+l, is not an integer.

(ii) For any maximal subfamily {A},<<q, such that codimc[A,
f A] =r with some rq, any eigenvalue of PI+" +P

is not an integer.
The solutions of the system of differential equations dY+2. Y=0 defines
a local system _E on X, which determines a homomorphism p’=(X, Xo)
--Aut (-Ex0). Let X be the universal covering of X. The homology H(X, _E)
is defined to be the ]-th homology of the complex C.(X)(R)z_Exo, where
G==(X, x0)and the space of chains of X is considered as a right Z[G]-
module via covering transformations and -Exo is a left Z[G]-module via p.
The homology of the locally finite (possibly infinite) chains is defined in the
same way and we denote it by H/(X, .E).

Theorem 1. Let us suppose that the integrable connection [2=,%P
dlogf is generic with respect to the hyperplanes {A}<</ in the sense

of (1.1). Let _E denote the local system over X=C- U=A associated
with 2. Then we have an isomorphism

(1.2) H(X, _E)-H(X, _E) for any ],


