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Introduction. Let An Hn/Fn, where Hn is the Siegel space {Z e Mn(C)
IZ=Z, Im Z0), and Fn=SP(Z). A is shown to be of general type for
n9 by Tai [5] (n=8 by Freitag [2], n=7 by Mumford [4]). Subvarieties
of An are expected to have the same property if they are not too special.
We have the following theorem. The details of the proof are included in
Tsuyumine [9].

Theorem. Let n:>10. Then any subvariety in An of codimension one
is of general type.

We have the following corollary to this theorem (cf. Freitag [3]). We
denote by Fn(1) the principal congruence subgroup of level l, and by An,
the quotient space H/F(1).

Corollary. Let n10. Then the birational automorphism group of
An, equals Aut(An,)NFn/ +__Fn(1). In particular, An has no non-trivial
birational automorphism.

1o Preliminaries. The symplectic group SP2n(R) acts on H by the
usual symplectic substitution"

Z---->MZ (AZ+B) (CZ+D)- ’,

(A B) e Sp2n(R).M=CD
Let Z=(z), and let

{1 i],w=(--1)+edz/dz/ /dz/h. Adzn, e= 2 i=],
for l_i_]=n. Let =(o). Then we have

M co CZ/D (CZ -q- D)cot(CZ/ D),
and so

M co(R)r CZ+D ]- (n ) (CZ+D)(R)ro(R)r (CZ+D)(R)r.

A Siegel modular torm f admits the Fourier expansion f(Z)
=s>=oa(S)e(tr ((1/2)SZ)), e( standing for exp (2=J- 1 ). f is said to
vanish to order cr (at the cusp) if a is the minimum integer such that a(S)
=0 for S with minz,0{(1/2)S[g]}o, S[g] denoting gSg. We denote it

by ord (f).
2. Theta series. Let m be an integer with m2(n--1), and let be

a complex m (n--l) matrix satisfying both =0 and rank ]=n--1.
(1 =< i=n) denotes an (n- 1) n matrix given by


