39. On a Criterion for Hypoellipticity

By Yoshinori Morimoto
Department of Engineering Mathematics, Nagoya University
(Communicated by Kôsaku Yosida, m. J. A., April 14, 1986)

Introduction and main theorems. In this note we give a sufficient condition for second order differential operators to be hypoelliptic. The condition is also necessary for a special class of differential operators.

Let Ω be an open set in R^{n} and let $P=p\left(x, D_{x}\right)$ be a second order differential operator with real valued coefficients in $C^{\infty}(\Omega)$. Let (u, v) denote the inner product of u, v in L^{2} and $\|u\|^{2}=(u, u)$. Let $\|\cdot\|_{s}$ denote the Sobolev space H_{s} for real s.

Theorem 1. Assume that for any $\varepsilon>0$ and any compact set K of Ω there is a constant $C_{\varepsilon, K}$ such that

$$
\begin{equation*}
\left\|\left(\log \left\langle D_{x}\right\rangle\right)^{2} u\right\| \leqq \varepsilon\|P u\|+C_{\varepsilon, K}\|u\|, \quad u \in C_{0}^{\infty}(K), \tag{1}
\end{equation*}
$$

where $\log \left\langle D_{x}\right\rangle$ denotes a pseudodifferential operator with a symbol $\log \langle\xi\rangle$, $\langle\xi\rangle^{2}=|\xi|^{2}+1$. Assume that the estimate

$$
\begin{align*}
& \sum_{j=1}^{n}\left(\left\|P^{(j)} u\right\|^{2}+\left\|P_{(j)} u\right\|_{-1}^{2}\right) \tag{2}\\
& \leqq C\left(\operatorname{Re}(P u, u)+\|u\|^{2}\right), \quad u \in C_{0}^{\infty}(K)
\end{align*}
$$

holds for a constant $C=C_{K}$, where $P^{(j)}=\partial_{\xi_{j}} p(x, \xi)$ and $P_{(j)}=D_{x_{j}} p(x, \xi)$. Then P is hypoelliptic in Ω. Furthermore we have WF Pu=WF u for $u \in \mathscr{D}^{\prime}(\Omega)$.

We remark that the hypothesis of (2) is removable if the principal symbol of P is non-negative. The estimate (1) is not always necessary for the hypoellipticity. We have a counter example $D_{x_{1}}^{2}+\exp \left(-1 /\left|x_{1}\right|^{0}\right) D_{x_{2}}^{2}$ for $\delta \geqq 1$ given by [1] (cf. [6]). However, for a class of differential operators, the estimate (1) is necessary to be hypoelliptic. The result is extendible to operators of higher order. Let m be an even positive integer and let P_{0} be a differential operator of the form

$$
\begin{equation*}
P_{0}=D_{t}^{m}+\mathscr{A}\left(x, D_{x}\right) \quad \text { in } R_{t} \times R_{x}^{n} \tag{3}
\end{equation*}
$$

where $\mathcal{A}\left(x, D_{x}\right)$ is a differential operator of order m with C^{∞}-coefficients and formally self-adjoint in an open set Ω of R_{x}^{n}. We assume that $\mathcal{A}\left(x, D_{x}\right)$ admits a positive self-adjoint realization $(A, D(A))$ in $L^{2}(\Omega)$.

Theorem 2. Let P_{0} be the operator defined above. Assume that P_{0} is hypoelliptic in $R_{t} \times \Omega$. Then for any $\left(t_{0}, x_{0}\right) \in R_{t} \times \Omega$ one can find a neighborhood ω of x_{0} satisfying the following: For any $\varepsilon>0$ there is a constant C_{ε} such that
(4) $\quad\left\|\left(\log \left\langle D_{t}, D_{x}\right\rangle\right)^{m / 2} u\right\|^{2} \leqq \varepsilon \operatorname{Re}\left(P_{0} u, u\right)+C_{\varepsilon}\|u\|^{2}, \quad u \in C_{0}^{\infty}\left(R_{t} \times \omega\right)$.

We remark that when $m=2$ the estimate (1) follows from (4) by means of the partition of unity over K and the replacement of u by $\left(\log \left\langle D_{t}, D_{x}\right\rangle\right) u$.

