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1o Introduction. In this article we shall study the nonlinear wave
equation
( 1 ttt--Uxx--g(t)--f(x, t), (X, t) e (0, 7c)
( 2 u(0, t) =u(z, t)=0, t e R,
( 3 ) u(x, t + T)=u(x, t), (x, t) e (0, ) R,
where T0 is a rational multiple of z, g(s) is a continuous unction on R
and f(x, t) is a given T-periodic unction of t.

Many mathematicians concerned with this problem (see [1], [7] and its
references). Except or [2, 3, 6, 11, 12] they ask that g(s) is monotonic,
in order to overcome the lack of compactness due to the fact that the kernel
of the wave operator 3--3 is infinite dimensional.

Working in a restricted class H of unctions satisfying some symmetry
properties and such that

( ) H Ker (--3)-- {0},
(ii) H is invariant under 3--3 and g,

J. M. Coron [3] proved the existence of multiple T-periodic solutions of
(1)-(3) in case f_0 and the existence of forced vibrations under the condi-
tion f e H without assumption of monotonicity. See also N. Basile and
M. Mininni [2].

On the other hand, M. Willem [11, 12] and H. Hofer [6] also dealt with
the problem (1)-(3) without the monotonicity assumption. They tackled
the infinite dimensional kernel of 3-3 without introducing restricted
classes. Under the ollowing nonresonance condition"

For consecutive eigenvalues fl of --(-) and

(4) or some constants e)0, r0,

a/e_(s) =</_ or
s

and some additional conditions, they proved that (1)-(3) is almost solvable
(1)-(3) possesses a solution or a dense set of f’s in L, in other words, the
range o the operator’u-u-Uxx/g(u) is dense in L. Their arguments
are based on the variational methods; [11, 12] used I. Ekeland’s variational
principles (c.f. [4]), [6] used Leray-Schauder theory in conjunction with
the variational method. Note that under the condition (4) the solutions of
(1)-(3) are a priori bounded in L. See also K. Tanaka [10].

This paper is an extension o [6, 10, 11, 12] and deals with the case


