37. Density of the Range of a Wave Operator with Nonmonotone Superlinear Nonlinearity

By Kazunaga Tanaka
Department of Mathematics, Nagoya University
(Communicated by Kôsaku Yosida, m. J. A., April 14, 1986)

1. Introduction. In this article we shall study the nonlinear wave equation :

$$
\begin{array}{lll}
\text { (1) } & u_{t t}-u_{x x}+g(u)=f(x, t), & (x, t) \in(0, \pi) \times \boldsymbol{R}, \\
\text { (2) } & u(0, t)=u(\pi, t)=0, & t \in \boldsymbol{R}, \tag{2}\\
\text { (3) } & u(x, t+T)=u(x, t), & (x, t) \in(0, \pi) \times \boldsymbol{R},
\end{array}
$$

where $T>0$ is a rational multiple of $\pi, g(s)$ is a continuous function on \boldsymbol{R} and $f(x, t)$ is a given T-periodic function of t.

Many mathematicians concerned with this problem (see [1], [7] and its references). Except for $[2,3,6,11,12]$ they ask that $g(s)$ is monotonic, in order to overcome the lack of compactness due to the fact that the kernel of the wave operator $\partial_{t}^{2}-\partial_{x}^{2}$ is infinite dimensional.

Working in a restricted class \tilde{H} of functions satisfying some symmetry properties and such that
(i) $\tilde{H} \cap \operatorname{Ker}\left(\partial_{t}^{2}-\partial_{x}^{2}\right)=\{0\}$,
(ii) \tilde{H} is invariant under $\partial_{t}^{2}-\partial_{x}^{2}$ and g, J. M. Coron [3] proved the existence of multiple T-periodic solutions of (1)-(3) in case $f \equiv 0$ and the existence of forced vibrations under the condition $f \in \tilde{H}$ without assumption of monotonicity. See also N. Basile and M. Mininni [2].

On the other hand, M. Willem [11, 12] and H. Hofer [6] also dealt with the problem (1)-(3) without the monotonicity assumption. They tackled the infinite dimensional kernel of $\partial_{t}^{2}-\partial_{x}^{2}$ without introducing restricted classes. Under the following nonresonance condition : For consecutive eigenvalues $\alpha<\beta$ of $-\left(\partial_{t}^{2}-\partial_{x}^{2}\right)$ and for some constants $\varepsilon>0, r>0$,

$$
\begin{equation*}
\alpha+\varepsilon \leqq \frac{g(s)}{s} \leqq \beta-\varepsilon \quad \text { for }|s| \geqq r, \tag{4}
\end{equation*}
$$

and some additional conditions, they proved that (1)-(3) is almost solvable; (1)-(3) possesses a solution for a dense set of f 's in L^{2}, in other words, the range of the operator: $u \rightarrow u_{t t}-u_{x x}+g(u)$ is dense in L^{2}. Their arguments are based on the variational methods; [11, 12] used I. Ekeland's variational principles (c.f. [4]), [6] used Leray-Schauder theory in conjunction with the variational method. Note that under the condition (4) the solutions of (1)-(3) are a priori bounded in L^{2}. See also K. Tanaka [10].

This paper is an extension of $[6,10,11,12]$ and deals with the case

