36. Some Applications of the Generalized Libera Integral Operator

By Shigeyoshi OWA*) and H. M. SRIVASTAVA**)

(Communicated by Kôsaku Yosida, M. J. A., April 14, 1986)

Summary. The object of the present paper is to prove several interesting characterization theorems involving the generalized Libera integral operator \mathcal{J}_c and a general class $\mathcal{C}(\alpha, \beta)$ of close-to-convex functions in the unit disk. An application of the integral operator \mathcal{J}_c to a class of generalized hypergeometric functions is also considered.

1. Introduction. Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $\mathcal{U}=\{z:|z|<1\}$. Also let \mathcal{S} denote the class of all functions in \mathcal{A} which are univalent in the unit disk \mathcal{U} . Then a function $g(z) \in \mathcal{S}$ is said to be starlike of order α if and only if

for some α ($0 \leq \alpha < 1$) and for all $z \in U$. We denote by $S^*(\alpha)$ the class of all functions in S which are starlike of order α . Note that

(1.3) $\mathcal{S}^*(\alpha) \subseteq \mathcal{S}^*(0) \equiv \mathcal{S}^* \subset \mathcal{S}$ $(0 \leq \alpha < 1)$. Throughout this paper, it should be understood that functions such as

zg'(z)/g(z), which have removable singularities at z=0, have had these singularities removed in statements like (1.2).

The class $S^*(\alpha)$ was introduced by Robertson [8], and was studied subsequently by Schild [9], MacGregor [5], Pinchuk [7], Jack [2], and others.

A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{C}(\alpha, \beta)$ if there is a starlike function g(z) of order α such that

(1.4)
$$\operatorname{Re}\left\{\frac{zf'(z)}{g(z)}\right\} > \beta$$

for some β ($0 \leq \beta < 1$) and for all $z \in U$. It follows from (1.4) that

(1.5)
$$\mathcal{C}(\alpha, \beta) \subseteq \mathcal{C}(\alpha, \gamma) \quad (0 \leq \gamma \leq \beta < 1).$$

In particular, C(0, 0) is the familiar class of close-to-convex functions, and $C(0, \beta)$ is an important subclass of close-to-convex functions. Thus $C(\alpha, \beta)$ provides an interesting generalization of the class of close-to-convex functions.

In the present paper we make use of the generalized Libera integral operator \mathcal{J}_c , defined by Equation (2.1) below, with a view to proving several

^{*)} Department of Mathematics, Kinki University, Higashi-Osaka, Osaka, Japan.

^{**} Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2 Canada.