26. On Some Properties of Set-dynamical Systems

By Masayoshi HATA

Department of Mathematics, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1985)

1. Introduction. In [2], the author investigated self-similar sets, including classical singular curves like Peano's and Koch's, as the invariant sets under several contraction mappings.

In this paper, we shall treat such a peculiar set as the fixed point of a certain set-dynamical system.

Let X be a complete metric space with a metric d. The power set 2^x of all subsets of X forms a partially ordered set under set-inclusion in a natural way, that is, $x \le y$ means x is a subset of y. Moreover, 2^x is a complete lattice with operations join "+" (set-union) and meet " \cdot " (set-intersection). Let C(X) be a subcollection of 2^x of all non-empty compact subsets of X, which is itself a partially ordered set under the same inclusion relation. Since $C(X) \ne \phi$ (empty set), C(X) is not a lattice but a join-semilattice with the binary relation "+".

It is known that C(X) is a complete metric space equipped with the Hausdorff metric:

 $d_H(x, y) = \max (\inf \{\varepsilon > 0, N_{\epsilon}(x) \ge y\}, \inf \{\varepsilon > 0, N_{\epsilon}(y) \ge x\})$ where $N_{\epsilon}(x) \in 2^x$ is an ε -neighbourhood of the set x. Moreover, if X is compact, C(X) becomes also a compact metric space [4]. Note that the mapping $i: X \to C(X)$, which maps p into $\{p\}$, is an isometry.

2. Induced mappings. A mapping $F: C(X) \to C(X)$ is said to be order-preserving provided that $x \le y$ implies $F(x) \le F(y)$; a join-endomorphism provided that F(x+y) = F(x) + F(y) for all $x, y \in C(X)$. Let \mathcal{P} consist of all continuous, order-preserving join-endomorphisms defined on C(X); and let $F \le G$ mean that $F(x) \le G(x)$ for every $x \in C(X)$. Then \mathcal{P} becomes a join-semilattice with operation "+", that is, (F+G)(x) means F(x)+G(x) for every $x \in C(X)$.

Now let $f: X \to X$ be a continuous mapping. Since the image of $x \in C(X)$ under f is plainly compact, we can define the *induced mapping* $f^*: C(X) \to C(X)$ in a natural way. Note that $(f \circ g)^* = f^* \circ g^*$ for any continuous self-mappings f, g. It is obvious that any induced mapping is contained in \mathcal{P} .

A self-mapping h defined on a metric space (E, δ) is said to satisfy the condition ψ provided that

 $\delta(h(x), h(y)) \le \psi(\delta(x, y))$ for every $x, y \in E$, where $\psi(t)$ is a non-decreasing right-continuous real-valued function defined on $[0, \infty)$ satisfying $\psi(0)=0$. Then we have: