25. The L L -boundedness of Pseudo-differential Operators Satisfying Estimates of Parabolic Type and Product Type. II

By Masao Yamazaki
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, M. J. A., April 12, 1985)

We stated in our previous paper (Yamazaki [6]) the L^{p}-boundedness of pseudo-differential operators with non-smooth symbols satisfying nonclassical estimates. A proof will be given in the forthcoming paper (Yamazaki [7]).

On the other hand, Bourdaud [1] and Nagase [4] generalized the $L^{p_{-}}$ boundedness theorem of Coifman-Meyer [2] and Muramatu-Nagase [3] on the classical symbols, by considering the combined effect of the x-regularity and the ξ-growth of the symbols.

Here we consider a similar effect where the symbols satisfy non-classical estimates. Our main theorem is an improvement of Theorem 4 of [7].

1. Notations and definitions. Let $n(1), \cdots, n(N)$ be positive integers. We put $n=n(1)+\cdots+n(N)$ and

$$
\Lambda(\nu)=\{l \in N ; n(1)+\cdots+n(\nu-1)+1 \leqq l \leqq n(1)+\cdots+n(\nu)\}
$$

for $\nu=1, \cdots, n$.
We regard \boldsymbol{R}^{n} as $\boldsymbol{R}^{n(1)} \times \cdots \times \boldsymbol{R}^{n(N)}$, and write $x \in \boldsymbol{N}^{n}$ as $x=\left(x^{(1)}, \cdots, x^{(N)}\right)$, where $x^{(\nu)}=\left(x_{l}\right)_{l \in \Lambda(\nu)}$. We also give a weight $M=\left(M^{(1)}, \cdots, M^{(N)}\right)$ to the coordinate variables of \boldsymbol{R}^{n}, where each $M^{(\nu)}=\left(m_{l}\right)_{l \in \Lambda(\nu)}$ satisfies the condition $\min _{l \in \Lambda(\nu)} m_{l}=1$.

Next, for every $\nu=1, \cdots, N$, we define a function $[y]_{\nu}$ of $y=\left(y_{l}\right)_{l \in \Lambda(\nu)}$ $\in \boldsymbol{R}^{n(\nu)}$ with values in $\boldsymbol{R}^{+}=\{t ; t \geqq 0\}$ as follows. We put [0] $=0$, and if $y \neq 0$, let $[y]_{\nu}$ denote the unique positive root of the equation $\sum_{l \in \Lambda(\nu)} t^{-2 m_{l}} y_{l}^{2}=1$ with respect to t.

Further, for $\nu=1,2, \cdots, N$ and $y \in R^{n(\nu)}$, let $\Delta_{y}^{(\nu)}$ denote the difference of the first order with respect to the ν-th part of the coordinate variables ; that is, we put

$$
\Delta_{\nu}^{(\nu)} f(x)=f\left(x^{(1)}, \cdots, x^{(\nu)}-y, \cdots, x^{(N)}\right)-f(x)
$$

for a function $f(x)$ on \boldsymbol{R}^{n}. We also fix a positive number L.
Now we introduce a notion to state our main theorem.
Definition. We call a family of functions $\left\{\omega_{1}\left(s_{1} ; t_{1}\right), \omega_{2}\left(s_{1}, s_{2} ; t_{1}, t_{2}\right)\right.$, $\left.\cdots, \omega_{N}\left(s_{1}, s_{2}, \cdots, s_{N} ; t_{1}, t_{2}, \cdots, t_{N}\right)\right\}$ a multiple modulus of growth and continuity if it satisfies the following four conditions:

1) For every ν, the function $\omega_{\nu}\left(s_{1}, \cdots, s_{\nu} ; t_{1}, \cdots, t_{\nu}\right)$ is a function on $\left(\boldsymbol{R}^{+}\right)^{2 \nu}$ into \boldsymbol{R}^{+}, and is monotone-increasing and concave with respect to each t_{k}.
