21. On Tight t-designs in Compact Symmetric Spaces of Rank One

By Eiichi BANNAI^(),*) and Stuart G. HOGGAR^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1985)

We announce the following result. For the definition of tight t-designs, see §1.

Theorem 1. There exists an absolute constant t_o which satisfies the following: if X is a tight t-design in one of the complex projective spaces $P^{a}(C)$ (d=4, 6, 8, \cdots) or the quaternion projective spaces $P^{a}(H)$ (d=8, 12, 16, \cdots) then we have $t \leq t_o$.

Since the corresponding results for the other compact rank 1 symmetric spaces are already obtained (see [1], [2], [5]), we have the following.

Corollary to Theorem 1. There exists another absolute constant t_o which satisfies the following: if X is a tight t-design in one of the connected compact rank 1 symmetric spaces of (topological) dimension $d \ge 2$, then we have $t \le t_o$. (Here we need t_o to be at least 11 as there exists a tight 11-design in S^{23} .)

We expect that the actual value of t_o in Theorem 1 can be very small (i.e., something like 5 although it may not be exactly 5). The determination of the exact value of t_o , which is very involved, will be treated in a subsequent full paper which is now being prepared by us.

§1. Preliminaries. Let S be a connected compact symmetric space of rank 1. That is, S is one of the following spaces: sphere S^d , projective spaces $P^a(K)$ where K is one of the real field R $(d=2,3,4,\cdots)$, complex field C $(d=4,6,8,\cdots)$, quaternion field H $(d=8,12,16,\cdots)$ or the Cayley octanions O (d=16). Then $S=H\backslash G$ for a suitable pair of a compact Lie group G and its closed subgroup H. The space $L^2(S)$ is decomposed into the direct sum of irreducible G-spaces V_i (i.e. $L^2(S)=V_0\oplus V_1\oplus V_2\oplus\cdots)$ where V_i gives the *i*-th "spherical" representation of G. The dimension of V_i is finite and is denoted by m_i (cf. § 2).

A finite non-empty subset X of S is called a *t*-design in S if $\sum_{x \in X} f(x) = 0$ for any function $f \in V_1 \oplus V_2 \oplus \cdots \oplus V_t$. Note that for each t and each S, the existence of *t*-designs X in S is guaranteed by Seymour-Zaslavsky [17]. The reader is referred to [5], [6], [14], [16], etc. for the examples and the fundamental properties of *t*-designs in S.

Let d(x, y) be the distance function on S, and let δ be the diameter of S, i.e., $\delta = \max_{x,y \in X} d(x, y)$. Let $A(X) := \{d(x, y) \mid x, y \in X, x \neq y\}$. If |A(X)|

^{b)} Supported in part by NSF grant MCS-83082 and by British SERC grant.

^{*)} The Ohio State University; Queen Mary College, University of London.

^{**)} University of Glasgow.