19. Infinitely Many Periodic Solutions for the Equation:
 $$
\boldsymbol{u}_{t t}-\boldsymbol{u}_{x x} \pm|\boldsymbol{u}|^{s-1} \boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{t})
$$

By Kazunaga Tanaka
Department of Mathematics, Waseda University
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1985)

1. Introduction. In this article we shall study the nonlinear wave equation:
(1) \pm
$v_{t t}-v_{x x} \pm|v|^{s-1} v=f(x, t), \quad(x, t) \in(0, \pi) \times \boldsymbol{R}$,
(2)
$v(0, t)=v(\pi, t)=0, \quad t \in \boldsymbol{R}$,
(3) $\quad v(x, t+2 \pi)=v(x, t), \quad(x, t) \in(0, \pi) \times \boldsymbol{R}$,
where $s>1$ is a constant and $f(x, t)$ is a 2π-periodic function of t.
Our main result is as follows:
Theorem. Assume that $1<s<1+\sqrt{2}$ and $f(x, t) \in L_{\mathrm{ioc}}^{q}([0, \pi] \times \boldsymbol{R})$ $(q=1 / s+1)$ is a 2π-periodic function of t. Then (1) $-(3)$ possessess an unbounded sequence of weak solutions in $\left.L_{\mathrm{ioc}}^{s+1}[0, \pi] \times \boldsymbol{R}\right)$.

To prove our theorem, we convert the problem to a simpler one by a Legendre transformation which is used in H. Brézis, J. M. Coron and L. Nirenberg [2], that is, we use the dual variational formulation for (1) $)_{ \pm}-(3)$. Next we use a perturbation result of P. H. Rabinowitz [3] asserting the existence of infinitely many critical points of perturbed symmetric functionals.

After completing this work, the author knew announcement of the result of J. P. Ollivry [6]. His result is analogous to ours for (1) $)_{+}$-(3) but under the following conditions:

$$
1<s<2 \quad \text { and } \quad f(x, t) \in E \quad \text { (see (4)). }
$$

Our result obviously contains his result. Moreover our growth restriction $1<s<1+\sqrt{2}$ coincides with the condition which ensures the existence of an unbounded sequence of solutions of the semilinear elliptic equation:

$$
\begin{array}{ll}
-\Delta u=|u|^{s-1} u+f(x), & x \in \Omega \\
u=0, & x \in \partial \Omega
\end{array}
$$

where $\Omega \subset \boldsymbol{R}^{2}$ is a smooth bounded domain (see P. H. Rabinowitz [3]).
2. Outline of the proof of Theorem. We shall only give outline of proof. Details will be published elsewhere.

We shall deal with the case (1) ${ }_{+}$(3) (the argument is essentially the same for the case (1)_-(3)).

Let $\Omega=(0, \pi) \times(0,2 \pi)$.
We shall consider the operator $A u=u_{t t}-u_{x x}$ acting on functions in $L^{1}(\Omega)$ satisfying (2), (3). Denote by N the kernel of A. Consider the space

$$
\begin{equation*}
E=\left\{u \in L^{q}(\Omega) ; \int_{\Omega} u \phi=0 \text { for all } \phi \in N \cap L^{s+1}(\Omega)\right\} \tag{4}
\end{equation*}
$$

with L^{q} norm $\|\cdot\|_{q}$.

