19. Infinitely Many Periodic Solutions for the Equation: $u_{tt} - u_{xx} \pm |u|^{s-1} u = f(x, t)$

By Kazunaga TANAKA

Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1985)

- 1. Introduction. In this article we shall study the nonlinear wave equation:
- $(1)_{\pm} v_{tt} v_{xx} \pm |v|^{s-1} v = f(x, t), (x, t) \in (0, \pi) \times \mathbf{R},$
- (2) $v(0, t) = v(\pi, t) = 0,$ $t \in \mathbb{R},$
- (3) $v(x, t+2\pi) = v(x, t), \qquad (x, t) \in (0, \pi) \times R,$

where s>1 is a constant and f(x, t) is a 2π -periodic function of t.

Our main result is as follows:

Theorem. Assume that $1 < s < 1 + \sqrt{2}$ and $f(x, t) \in L^q_{loc}([0, \pi] \times \mathbf{R})$ (q=1/s+1) is a 2π -periodic function of t. Then $(1)_{\pm}$ -(3) possessess an unbounded sequence of weak solutions in $L^{s+1}_{loc}([0, \pi] \times \mathbf{R})$.

To prove our theorem, we convert the problem to a simpler one by a Legendre transformation which is used in H. Brézis, J. M. Coron and L. Nirenberg [2], that is, we use the dual variational formulation for $(1)_{\pm}$ –(3). Next we use a perturbation result of P. H. Rabinowitz [3] asserting the existence of infinitely many critical points of perturbed symmetric functionals.

After completing this work, the author knew announcement of the result of J. P. Ollivry [6]. His result is analogous to ours for $(1)_+$ –(3) but under the following conditions:

$$1 < s < 2$$
 and $f(x, t) \in E$ (see (4)).

Our result obviously contains his result. Moreover our growth restriction $1 < s < 1 + \sqrt{2}$ coincides with the condition which ensures the existence of an unbounded sequence of solutions of the semilinear elliptic equation:

$$-\Delta u = |u|^{s-1} u + f(x), \qquad x \in \Omega,$$

 $u = 0, \qquad x \in \partial \Omega,$

where $\Omega \subset \mathbb{R}^2$ is a smooth bounded domain (see P. H. Rabinowitz [3]).

2. Outline of the proof of Theorem. We shall only give outline of proof. Details will be published elsewhere.

We shall deal with the case $(1)_+$ –(3) (the argument is essentially the same for the case $(1)_-$ –(3)).

Let
$$\Omega = (0, \pi) \times (0, 2\pi)$$
.

We shall consider the operator $Au=u_{tt}-u_{xx}$ acting on functions in $L^1(\Omega)$ satisfying (2), (3). Denote by N the kernel of A. Consider the space

(4)
$$E = \left\{ u \in L^q(\Omega) ; \int_{\mathcal{Q}} u \phi = 0 \text{ for all } \phi \in N \cap L^{s+1}(\Omega) \right\}$$

with L^q norm $\|\cdot\|_q$.