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1o Introduction. The purpose of this paper is to solve a stochastic
differential equation (SDE) which represents the vortex flow in the whole
plane.

A system of n vortices Z,-(Z,..., ZD (Z e R is the position of the
i vortex at time t and ’, e R its vorticity intensity) in a viscous and in-
compressible fluid satisfies the following SDE.

( 1 ) dZ-adB+, K(Z-Z)dt, li_n,
j=l

where
( 2 ) K(z)-V+/-G(z) z-(x, y) e R2,
G(z)= -(2)- log Izl, V+/-=(3/3y, -(3/3x)), (B, ..., B) is a 2n-dim. Brownian
motion and a is a constant which is related to the viscosity. Since the
coefficients are singular on the set

S-- [_) {(z) e R2n; z--z},
i,j =1

it is not easy to solve (1). Let L be the generator of (1):

( 3 ) L=A+ , r(VG(z-- z)). Vi
--/:
i,j=l

where

V=( .3 ) and V=( 3 3 )
We can rewrite this as

( 4 ) L--,A+ rV. (G(z-z)V).
gj
t,j=l

One might expect to aply PDE results by taking advantage of this
divergence structure. However, they do not apply to the case considered
here, because G(z-z) has a log-type singularity.

The key point of the proof is to observe that L is a differential operator
of a generalized divergence form defined in Section 2 and apply a result
obtained in [3].

The coefficients K(z-z) are locally Lipschitz continuous on R--S.
Hence (1) is uniquely solvable till Z hits S. The problem is to show that
Z is conservative on Rn-S. Now, we state our main theorem.

Theorem. Let r= inf (t)0 Zt e S}. Then for any x R:n--S,
(5)


