94. A Stochastic Differential Equation Arising from the Vortex Problem

By Hirofumi OSADA

Department of Mathematics, Faculty of Science, Hokkaido University

(Communicated by Kôsaku YOSIDA, M. J. A., Dec. 12, 1985)

1. Introduction. The purpose of this paper is to solve a stochastic differential equation (SDE) which represents the vortex flow in the *whole* plane.

A system of *n* vortices $Z_t = (Z_t^1, \dots, Z_t^n)$ $(Z_t^i \in \mathbb{R}^2$ is the position of the i^{th} vortex at time *t* and $\gamma_i \in \mathbb{R}$ its vorticity intensity) in a viscous and incompressible fluid satisfies the following SDE.

(1)
$$dZ_t^i = \sigma dB_t^i + \sum_{\substack{j=1\\j \neq i}}^n \gamma_j K(Z_t^i - Z_t^j) dt, \quad 1 \leq i \leq n,$$

where

(2) $K(z) = \nabla^{\perp} G(z)$ $z = (x, y) \in \mathbb{R}^2$, $G(z) = -(2\pi)^{-1} \log |z|, \nabla^{\perp} = (\partial/\partial y, -(\partial/\partial x)), (B_t^1, \dots, B_t^n)$ is a 2*n*-dim. Brownian

 $G(z) = -(2\pi)^{-1} \log |z|, V^{\perp} = (\partial/\partial y, -(\partial/\partial x)), (B_t^{\perp}, \dots, B_t^{n})$ is a 2*n*-dim. Brownian motion and σ is a constant which is related to the viscosity. Since the coefficients are singular on the set

$$S = igcup_{\substack{i \neq j \ i, j = 1}}^n \{(z_i) \in R^{2n} ; z_i = z_j\},$$

it is not easy to solve (1). Let L be the generator of (1):

(3)
$$L = \nu \varDelta + \sum_{\substack{i \neq j \\ i,j=1}}^{n} \Upsilon_{j}(\nabla_{i}^{\perp}G(z_{i}-z_{j})) \cdot \nabla_{i}$$

where

$$u = rac{1}{2}\sigma^2, \quad
abla_i = \left(rac{\partial}{\partial x_i}, rac{\partial}{\partial y_i}
ight) \quad ext{and} \quad
abla_i^\perp = \left(rac{\partial}{\partial y_i}, -rac{\partial}{\partial x_i}
ight).$$

We can rewrite this as

(4)
$$L = \nu \varDelta + \sum_{\substack{i \neq j \\ i, j=1}}^{n} \Upsilon_{j} \nabla_{i}^{\perp} \cdot (G(z_{i} - z_{j}) \nabla_{i}).$$

One might expect to apply PDE results by taking advantage of this divergence structure. However, they do not apply to the case considered here, because $G(z_i - z_j)$ has a log-type singularity.

The key point of the proof is to observe that L is a differential operator of a *generalized divergence form* defined in Section 2 and apply a result obtained in [3].

The coefficients $K(z_i - z_j)$ are locally Lipschitz continuous on $R^{2n} - S$. Hence (1) is uniquely solvable till Z_i hits S. The problem is to show that Z_i is conservative on $R^{2n} - S$. Now, we state our main theorem.

Theorem. Let
$$\tau = \inf \{t > 0 : Z_t \in S\}$$
. Then for any $x \in R^{2n} - S$,
(5) $P_x\{\tau < \infty\} = 0$.