92. On Some Algebraic Differential Equations with Admissible Algebroid Solutions

By Nobushige Toda*) and Masakimi Kato**)
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1985)

1. Introduction. About fifty years ago, K. Yosida ([9]) proved the following theorem.

Theorem A. When the differential equation with rational coefficients $(w')^m = \sum_{j=0}^p a_j w^j / \sum_{k=0}^q b_k w^k \qquad (a_p \cdot b_q \neq 0),$

where m is a positive integer and $\sum a_j w^j$, $\sum b_k w^k$ are irreducible, admits at least one transcendental ν -valued algebroid solution in $|z| < \infty$, then it holds that

$$\max (p, q+2m) \leq 2m\nu.$$

This theorem was extended by several authors ([1], [2], [3], [4] etc.). In this paper, we shall consider the differential equation

(2)
$$\Omega(w, w', \dots, w^{(n)}) = P(w)/Q(w),$$

where $\Omega(w, w', \dots, w^{(n)}) = \sum_{\lambda \in I} c_{\lambda} w^{i_0} (w')^{i_1} \cdots (w^{(n)})^{i_n}$ $(n \ge 1)$ is a differential polynomial with meromorphic coefficients, I being a finite set of multiindices $\lambda = (i_0, i_1, \dots, i_n)$, $(i_i$: non-negative integers), for which $c_{\lambda} \ne 0$, and where P(w), Q(w) are polynomials in w with meromorphic coefficients and mutually prime over the field of meromorphic functions:

$$P(w) = \sum_{j=0}^{p} a_j w^j \quad (a_p \neq 0), \qquad Q(w) = \sum_{k=0}^{q} b_k w^k \quad (b_q \neq 0).$$

The term "meromorphic" (resp. "algebroid") will mean meromorphic (resp. algebroid) in the complex plane. Put

$$\Delta = \max_{\lambda \in I} \sum_{j=0}^{n} (j+1)i_j$$
, $\Delta_o = \max_{\lambda \in I} \sum_{j=1}^{n} ji_j$, $d = \max_{\lambda \in I} \sum_{j=0}^{n} i_j$ and

$$\sigma = \max_{\lambda \in I} \sum_{j=1}^{n} (2j-1)i_j$$
.

An algebroid solution w=w(z) of (2) is said to be admissible when T(r, f) = S(r, w) for all coefficients $f=c_1$, a_j and b_k in (2), where S(r, w) is any quantity satisfying S(r, w)=o(T(r, w)) as $r\to\infty$, possibly outside a set of r of finite linear measure.

Recently, Gackstatter and Laine ([1], [2]), Y. He and X. Xiao ([3]) extended Theorem A as follows:

"If the differential equation (2) admits an admissible algebroid solution w=w(z) with ν branches, then

- (i) $q \le 4\Delta_o(\nu-1), p \le \Delta + 4\Delta_o(\nu-1)$ ([1], [2]),
- (ii) $q \leq 2\sigma(\nu-1)$, $p \leq q+d+\Delta_{\sigma}\nu(1-\theta(w,\infty))$ ([3]) where $\theta(w,\infty)=1-\limsup_{r\to\infty}\overline{N}(r,w)/T(r,w)$."

In this paper, we shall improve these results and give some examples.

^{*)} Department of Mathematics, Nagoya Institute of Technology.

^{**)} Department of Mathematics, Faculty of Liberal Arts, Shizuoka University.