92. On Some Algebraic Differential Equations with Admissible Algebroid Solutions

By Nobushige Toda*) and Masakimi Kato**)
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1985)

1. Introduction. About fifty years ago, K. Yosida ([9]) proved the following theorem.

Theorem A. When the differential equation with rational coefficients

$$
\left(w^{\prime}\right)^{m}=\sum_{j=0}^{p} a_{j} w^{j} / \sum_{k=0}^{q} b_{k} w^{k} \quad\left(a_{p} \cdot b_{q} \neq 0\right)
$$

where m is a positive integer and $\sum a_{j} w^{j}, \sum b_{k} w^{k}$ are irreducible, admits at least one transcendental ν-valued algebroid solution in $|z|<\infty$, then it holds that

$$
\begin{equation*}
\max (p, q+2 m) \leqq 2 m \nu \tag{1}
\end{equation*}
$$

This theorem was extended by several authors ([1], [2], [3], [4] etc.). In this paper, we shall consider the differential equation

$$
\begin{equation*}
\Omega\left(w, w^{\prime}, \cdots, w^{(n)}\right)=P(w) / Q(w) \tag{2}
\end{equation*}
$$

where $\Omega\left(w, w^{\prime}, \cdots, w^{(n)}\right)=\sum_{\lambda \in I} c_{\lambda} w^{i_{0}}\left(w^{\prime}\right)^{i_{1}} \cdots\left(w^{(n)}\right)^{i_{n}}(n \geqq 1)$ is a differential polynomial with meromorphic coefficients, I being a finite set of multiindices $\lambda=\left(i_{0}, i_{1}, \cdots, i_{n}\right)$, (i_{l} : non-negative integers), for which $c_{\lambda} \neq 0$, and where $P(w), Q(w)$ are polynomials in w with meromorphic coefficients and mutually prime over the field of meromorphic functions:

$$
P(w)=\sum_{j=0}^{p} a_{j} w^{j} \quad\left(a_{p} \neq 0\right), \quad Q(w)=\sum_{k=0}^{q} b_{k} w^{k} \quad\left(b_{q} \neq 0\right)
$$

The term "meromorphic" (resp. "algebroid") will mean meromorphic (resp. algebroid) in the complex plane. Put

$$
\Delta=\max _{\lambda \in I} \sum_{j=0}^{n}(j+1) i_{j}, \quad \Delta_{o}=\max _{\lambda \in I} \sum_{j=1}^{n} j i_{j}, \quad d=\max _{\lambda \in I} \sum_{j=0}^{n} i_{j}
$$

and

$$
\sigma=\max _{\lambda \in I} \sum_{j=1}^{n}(2 j-1) i_{j} .
$$

An algebroid solution $w=w(z)$ of (2) is said to be admissible when $T(r, f)$ $=S(r, w)$ for all coefficients $f=c_{\lambda}, a_{j}$ and b_{k} in (2), where $S(r, w)$ is any quantity satisfying $S(r, w)=o(T(r, w))$ as $r \rightarrow \infty$, possibly outside a set of r of finite linear measure.

Recently, Gackstatter and Laine ([1], [2]), Y. He and X. Xiao ([3]) extended Theorem A as follows:
"If the differential equation (2) admits an admissible algebroid solution $w=w(z)$ with $\nu b r a n c h e s$, then
(i) $q \leqq 4 \Delta_{o}(\nu-1), p \leqq 4+4 \Delta_{o}(\nu-1)([1],[2])$,
(ii) $q \leqq 2 \sigma(\nu-1), p \leqq q+d+\Delta_{0} \nu(1-\theta(w, \infty))$ ([3]) where $\theta(w, \infty)=1-\lim \sup _{r \rightarrow \infty} \bar{N}(r, w) / T(r, w)$."

In this paper, we shall improve these results and give some examples.

[^0]
[^0]: *) Department of Mathematics, Nagoya Institute of Technology.
 **) Department of Mathematics, Faculty of Liberal Arts, Shizuoka University.

