89. A Note on the Mean Value of the Zeta and L-functions. II

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1985)

1. In the present note we consider the mean square of individual Dirichlet L-functions.

Let χ be a primitive character $(\bmod q)$, and put

$$
E(T, \chi)=\int_{0}^{T}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{2} d t-\frac{\varphi(q)}{q} T\left\{\log (q T / 2 \pi)+2 \gamma+2 \sum_{p \mid q}(\log p) /(p-1)\right\}
$$

where φ is the Euler function, γ the Euler constant, and p is a prime divisor of q. Then our problem is to find an estimate of $E(T, \chi)$ as uniform as possible for both parameters q and T. Our argument is based on the following χ-analogue of the important formula (3.4) of Atkinson [1].

Lemma 1. If $0<\operatorname{Re}(u)<1$ then

$$
\begin{align*}
L(u, \chi) L(1-u, \bar{\chi})=\frac{\varphi(q)}{q}\{ & \frac{1}{2}\left(\frac{\Gamma^{\prime}}{\Gamma}(u)+\frac{\Gamma^{\prime}}{\Gamma}(1-u)\right)+2 \gamma+\log \frac{q}{2 \pi} \tag{1}\\
& \left.+2 \sum_{p \mid q} \frac{\log p}{p-1}\right\}+g(u, \chi)+g(1-u, \bar{\chi})
\end{align*}
$$

where $g(u, \chi)$ is the analytic continuation of

$$
\begin{align*}
& \sum_{n=1}^{\infty} a(n, \chi) \int_{0}^{\infty} \exp (-2 \pi i n y / q) y^{-u}(1+y)^{u-1} d y \tag{2}\\
& \quad+\sum_{n=1}^{\infty} \overline{a(n, \bar{\chi})} \int_{0}^{\infty} \exp (2 \pi i n y / q) y^{-u}(1+y)^{u-1} d y
\end{align*}
$$

which is convergent when $\operatorname{Re}(u)<0$. Here

$$
a(n, \chi)=q^{-1} \sum_{a \mid n} \sum_{m=1}^{q} \chi(m) \bar{\chi}(m+a) \exp (2 \pi i m n / a q)
$$

This can be proved by a simple modification of our argument used in [6]. We denote by $g_{1}(u, \chi)$ the first sum of (2). To get an explicit representation of $g_{1}(u, \chi)$ which holds at least for $\operatorname{Re}(u)<3 / 4$, we need some information on

To this end we put

$$
A(x)=\sum_{n \leq x} a(n, \chi) .
$$

$$
F(s, \chi)=\sum_{n=1}^{\infty} a(n, \chi) n^{-s},
$$

which is obviously convergent for $R e(s)>1$. Expressing $F(s, \chi)$ by a combination of Hurwitz zeta-functions, we get

$$
\begin{aligned}
& \text { Lemma 2. } \quad F(s, \chi) \text { is entire, and when } R e(s)<0 \\
& F(s, \chi)=2(q \tau(\chi))^{-1}(2 \pi / q)^{2(s-1)} \Gamma^{2}(1-s) \\
& \quad \times \sum_{n=1}^{\infty} \chi(n) d(n) n^{s-1}(\chi(-1) \exp (-2 \pi i n / q)-\cos (\pi s) \exp (2 \pi i n / q)),
\end{aligned}
$$

