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1o Introduction. Throughout this note, we shall work within the
category of compactly generated Hausdorff spaces which will be simply
called spaces. Let X and Y be spaces with base points x0 and Y0 respec-
tively. We denote by map (X, Y) and map0 (X, Y) the space of maps of X
to Y and the space of maps of (X, x0) to (Y, Y0) respectively. Moreover,
when/0 is a map of X to Y, we denote by map (X, Y ;/) the path component
of/ in map (X, Y), and map0 (X, Y ;/) is defined similarly. A CW complex
means a connected CW complex with non-degenerate base point. Let X
be a CW complex with base point Xo, G(X) the space of self homotopy
equivalences of X and Go(X) the space of self homotopy equivalences of
(X, x0). In previous papers [5], [6], [7] we studied Go(X) when X-E is a

fibre space, of a fibration" F-i E >B. This paper is also concerned
with Go(X) for a fibre space X.

2. Main results. We quote the following two theorems [5, 6].

Theorem A. Let E and B be CW complexes and 29: E-B a fibration
with fibre F. Let nl be a given integer. If F is (n-1)-connected and
zr(B)=0 for every i>=n, then we have the following fibration

(E mod F)---Go(E) ;Go(B) Go(F),
where ?(E mod F) is the space of self fibre homotopy equivalences of E
leaving the fibre F fixed.

Theorem B. Under the same hypothesis as above, the image of p:
Go(E)-Go(B) Go(F) is just the union of the path components in Go(B)

Go(F) each of which contains (g, h) satisfying
[Z(h)] [k]= [/] [g],

where Z(h) is a self map of (B, b) and k: (B, bo)-(B, b) is a classifying

map in Allaud’s sense for the fibration" F ;E
p
>B.

Let (X) denote the group z0(G0(X)) for a CW complex X and let R be
a subgroup of (B)e(F) consisting of the elements ([g], [h]) satisfying

[Z(h)] [k]-[k] [g]. Then our main result is the following

Theorem 1. Let E and B be CW complexes and F E P ;B=K(z, n)
a fibration classified by a map k: (B, bo)-(B, b) in Allaud’s sense. Let
nl be a given integer. If F is n-connected and zj(F)=0 for every ]=2n,
then we have the following fibration


