86. On a Problem of R. Brauer on Zeta-Functions of Algebraic Number Fields

By Ken-ichi SATO Faculty of Engineering, Nihon University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1985)

1. Introduction. Let $\zeta_{\kappa}(s)$ denote the Dedekind zeta-function of an algebraic number field K. It has been shown by R. Brauer [3] that if Ω_1 and Ω_2 are two finite algebraic number fields which are both normal over their intersection k and their compositum is K, then

$\zeta_{\kappa}(s)\zeta_{\kappa}(s)/\zeta_{\varrho_1}(s)\zeta_{\varrho_2}(s)$

is an entire function. Let K_1 and K_2 be finite algebraic number fields over $k = K_1 \cap K_2$. Suppose now that at least one of K_1, K_2 is non-normal over k, and $K = K_1K_2$. Does it happen that also in this case the function $\zeta_K(s) \zeta_k(s)/\zeta_{K_1}(s)\zeta_{K_2}(s)$ becomes an entire function? We call this question R. Brauer's problem, and show that it has positive answer in some cases.

2. Main theorems.

Theorem 1. $\zeta_{Q(p\sqrt{n}, p\sqrt{m})}(s)\zeta(s)/\zeta_{Q(p\sqrt{n})}(s)\zeta_{Q(p\sqrt{m})}(s)$ is an entire function of s, where p is an odd prime and n, m are p-free relatively prime rational integers.

Proof. Let $\zeta = \exp(2\pi i/p)$. Then $Q(\sqrt[p]{n}, \zeta)/Q$ is normal and T =Gal $(\mathbf{Q}({}^{p}\sqrt{n},\boldsymbol{\zeta})/\mathbf{Q})$ is generated by the elements σ, τ as follows $\sigma^{p} = \tau^{p-1} = e$, $\tau \sigma \tau^{-1} = \sigma^{g}$, where g is a primitive root mod p and the elements σ and τ are characterized by $\sigma: \zeta \to \zeta, \ {}^{p}\sqrt{n} \to {}^{p}\sqrt{n}\zeta, \ \tau: \zeta \to \zeta^{q}, \ {}^{p}\sqrt{n} \to {}^{p}\sqrt{n}$. The group T has p-1 linear characters (i.e., irreducible characters of degree one) and precisely one simple non-linear character χ_p such that $\chi_p(e) = p - 1$. Here $\chi_p(\rho) = -1$ for $\rho \in \langle \sigma \rangle - \{e\}$ and $\chi_p(\rho) = 0$ for $\rho \in \langle \sigma \rangle$. We consider the field $M = Q(\sqrt[p]{n}, \sqrt[p]{m}, \zeta)$. Let τ^* be the element of G = Gal(M/Q) such that $\tau^*: \zeta \to \zeta^g, \ {}^p \sqrt{n} \to {}^p \sqrt{n}, \ {}^p \sqrt{m} \to {}^p \sqrt{m}$. Then $\Omega = Q({}^p \sqrt{n}, \ {}^p \sqrt{m})$ is the intermediate field of M over Q fixed by the cyclic subgroup $H = \langle \tau^* \rangle \subset G$ so that $H = \text{Gal}(M/\Omega)$. Next let δ be the element of Gal(M/Q) such that δ ; $\zeta \to \zeta$, $\sqrt[p]{n} \to \sqrt[p]{n}$, $\sqrt[p]{m} \to \sqrt[p]{m} \zeta$. Then $F = Q(\sqrt[p]{n}, \zeta)$ is the fixed field of $N = \langle \delta \rangle$ and we have Gal $(Q(\sqrt{n}, \zeta)/Q) \cong G/N$. Here we consider the map $G \xrightarrow{\varphi} G/N \xrightarrow{\chi_p} C$. If we denote $\lambda_p(x) = \chi_p(\varphi(x))$, then λ_p is one of the irreducible characters of G. In particular, $\lambda_n(\tau^*) = \chi_n(\tau) = 0$. Let $\mathbf{1}_H$ be the principal character of H, and we denote by 1_H^G the induced character of G. $\lambda_p|_H$ denotes the restriction of λ_p to H. Frobenius reciprocity yields

$$(1_{H}^{g}, \lambda_{p})_{g} = (1_{H}, \lambda_{p}|_{H})_{H} = \frac{1}{p-1} \sum_{h \in H} \lambda_{p}|_{H}(h)$$

= $\frac{1}{p-1} \left\{ \lambda_{p}|_{H}(e) + \sum_{e \neq h \in H} \lambda_{p}|_{H}(h) \right\} = \frac{1}{p-1} \{(p-1)+0+0+\dots+0\} = 1.$