86. On a Problem of R. Brauer on Zeta-Functions of Algebraic Number Fields

By Ken-ichi Sato
Faculty of Engineering, Nihon University

(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1985)

1. Introduction. Let $\zeta_{K}(s)$ denote the Dedekind zeta-function of an algebraic number field K. It has been shown by R. Brauer [3] that if Ω_{1} and Ω_{2} are two finite algebraic number fields which are both normal over their intersection k and their compositum is K, then

$$
\zeta_{K}(s) \zeta_{k}(s) / \zeta_{a_{1}}(s) \zeta_{a_{2}}(s)
$$

is an entire function. Let K_{1} and K_{2} be finite algebraic number fields over $k=K_{1} \cap K_{2}$. Suppose now that at least one of K_{1}, K_{2} is non-normal over k, and $K=K_{1} K_{2}$. Does it happen that also in this case the function $\zeta_{K}(s)$ $\zeta_{k}(s) / \zeta_{K_{1}}(s) \zeta_{K_{2}}(s)$ becomes an entire function? We call this question R. Brauer's problem, and show that it has positive answer in some cases.

2. Main theorems.

Theorem 1. $\quad \zeta_{Q\left({ }^{p} \sqrt{n}, p^{p} \sqrt{m}\right)}(s) \zeta(s) / \zeta_{Q^{(p / \sqrt{n})}}(s) \zeta_{Q^{(p / \sqrt{m})}}(s)$ is an entire function of s, where p is an odd prime and n, m are p-free relatively prime rational integers.

Proof. Let $\zeta=\exp (2 \pi i / p)$. Then $\boldsymbol{Q}\left({ }^{p} \sqrt{n}, \zeta\right) / \boldsymbol{Q}$ is normal and $T=$ $\operatorname{Gal}\left(\boldsymbol{Q}\left(^{p} \sqrt{n}, \zeta\right) / \boldsymbol{Q}\right)$ is generated by the elements σ, τ as follows $\sigma^{p}=\tau^{p-1}=e$, $\tau \sigma \tau^{-1}=\sigma^{g}$, where g is a primitive root $\bmod p$ and the elements σ and τ are characterized by $\sigma: \zeta \rightarrow \zeta, \sqrt{p} \sqrt{n} \rightarrow^{p} \sqrt{n} \zeta, \tau: \zeta \rightarrow \zeta^{q},{ }^{p} \sqrt{n} \rightarrow^{p} \sqrt{n}$. The group T has $p-1$ linear characters (i.e., irreducible characters of degree one) and precisely one simple non-linear character χ_{p} such that $\chi_{p}(e)=p-1$. Here $\chi_{p}(\rho)=-1$ for $\rho \in\langle\sigma\rangle-\{e\}$ and $\chi_{p}(\rho)=0$ for $\rho \notin\langle\sigma\rangle$. We consider the field $M=\boldsymbol{Q}\left({ }^{p} \sqrt{n}, \sqrt[p]{m}, \zeta\right)$. Let τ^{*} be the element of $G=\operatorname{Gal}(M / \boldsymbol{Q})$ such that $\tau^{*}: \zeta \rightarrow \zeta^{q}, \sqrt[p]{n} \rightarrow{ }^{p} \sqrt{n}, \sqrt[p]{m} \rightarrow \sqrt{m}$. Then $\Omega=\boldsymbol{Q}(\sqrt{p} \sqrt{n}, \sqrt[p]{m})$ is the intermediate field of M over \boldsymbol{Q} fixed by the cyclic subgroup $H=\left\langle\tau^{*}\right\rangle \subset G$ so that $H=\operatorname{Gal}(M / \Omega)$. Next let δ be the element of $\operatorname{Gal}(M / Q)$ such that $\delta ; \zeta \rightarrow \zeta,{ }^{p} \sqrt{n} \rightarrow \sqrt[p]{n},{ }^{p} \sqrt{m} \rightarrow^{p} \sqrt{m} \zeta$. Then $F=\boldsymbol{Q}\left({ }^{p} \sqrt{n}, \zeta\right)$ is the fixed field of $N=\langle\delta\rangle$ and we have $\left.\operatorname{Gal}\left(\boldsymbol{Q}^{(p} \sqrt{n}, \boldsymbol{\zeta}\right) / \boldsymbol{Q}\right) \cong G / N$. Here we consider the $\operatorname{map} G \xrightarrow{\varphi} G / N \xrightarrow{\chi_{p}} C$. If we denote $\lambda_{p}(x)=\chi_{p}(\varphi(x))$, then λ_{p} is one of the irreducible characters of G. In particular, $\lambda_{p}\left(\tau^{*}\right)=\chi_{p}(\tau)=0$. Let 1_{H} be the principal character of H, and we denote by 1_{H}^{G} the induced character of G. $\left.\quad \lambda_{p}\right|_{H}$ denotes the restriction of λ_{p} to H. Frobenius reciprocity yields

$$
\begin{aligned}
\left(1_{H}^{G}, \lambda_{p}\right)_{G} & =\left(1_{H},\left.\lambda_{p}\right|_{H}\right)_{H}=\left.\frac{1}{p-1} \sum_{h \in H} \lambda_{p}\right|_{H}(h) \\
& =\frac{1}{p-1}\left\{\left.\lambda_{p}\right|_{H}(e)+\left.\sum_{e \neq h \in H} \lambda_{p}\right|_{H}(h)\right\}=\frac{1}{p-1}\{(p-1)+0+0+\cdots+0\}=1 .
\end{aligned}
$$

