84. The Fourier-Borel Transformations of Analytic Functionals on the Complex Sphere

By Ryoko WADA

Sophia University

(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1985)

1. Introduction. Let d be a positive integer and $d \ge 2$. $S = S^d$ denotes the unit sphere in \mathbb{R}^{d+1} . L(z) and $L^*(z)$ denote the Lie norm and the dual Lie norm on \mathbb{C}^{d+1} respectively:

$$\begin{split} L(z) = & L(x+iy) = [\|x\|^2 + \|y\|^2 + 2\{\|x\|^2 \|y\|^2 - (x \cdot y)^2\}^{1/2}]^{1/2}, \\ L^*(z) = & \sup\{|\xi \cdot z|; \ L(\xi) \leq 1\}, \end{split}$$

where $\boldsymbol{\xi} \cdot \boldsymbol{z} = \sum_{j=1}^{d+1} \boldsymbol{\xi}_j \cdot \boldsymbol{z}_j$, $x, y \in \boldsymbol{R}^{d+1}$, and $||x||^2 = x \cdot x$.

 $\mathcal{O}(\mathbf{C}^{d+1})$ denotes the space of entire functions on \mathbf{C}^{d+1} . We put

 $\operatorname{Exp} \left(\boldsymbol{C}^{d+1} \colon (r:N) \right) = \lim \operatorname{proj} X_{r':N} \quad \text{for } 0 \leqslant r < \infty$

and

$$\operatorname{Exp}\left(\boldsymbol{C}^{d+1}:[r:N]\right) = \liminf_{r' < r} X_{r':N} \quad \text{for } 0 < r \leq \infty,$$

where N is a norm on C^{d+1} and

$$X_{r':N} = \{ f \in \mathcal{O}(\mathbf{C}^{d+1}); \sup_{z \in \mathbf{C}^{d+1}} |f(z)| e^{-r'N(z)} < \infty \}.$$

We denote the complex sphere by $\tilde{S} = \{z \in C^{d+1}; z_1^2 + z_2^2 + \cdots + z_{d+1}^2 = 1\}$, and we put $\tilde{S}(r) = \{z \in \tilde{S}; L(z) < r\}$ for r > 1 and $\tilde{S}[r] = \{z \in \tilde{S}; L(z) \leq r\}$ for $r \ge 1$. $\mathcal{O}(\tilde{S}(r))$ denotes the space of holomorphic functions on $\tilde{S}(r)$ and we put $\mathcal{O}(\tilde{S}[r]) = \liminf_{r'>r} \mathcal{O}(\tilde{S}(r'))$. Exp (\tilde{S}) denotes the restriction to \tilde{S} of the space Exp (C^{d+1}) of entire functions of exponential type. $\mathcal{O}'(\tilde{S}(r))$, $\mathcal{O}'(\tilde{S}[r])$ and Exp' (\tilde{S}) denote the dual spaces of $\mathcal{O}(\tilde{S}(r))$, $\mathcal{O}(\tilde{S}[r])$, and Exp (\tilde{S}) respectively.

The Fourier-Borel transformation P_{λ} for a functional $f' \in \operatorname{Exp}'(\tilde{S})$ is defined by

 $P_{\lambda}f'(z) = \langle f_{\xi}', \exp i\lambda(\xi \cdot z) \rangle$ for $z \in C^{d+1}$,

where $\lambda \in C$, $\lambda \neq 0$ is a fixed constant.

Morimoto [1] determined the images of $\text{Exp}'(\tilde{S})$ and $\mathcal{O}'(\tilde{S})$ by P_{λ} . The purpose of this paper is to determine the images of $\mathcal{O}'(\tilde{S}(r))$ and $\mathcal{O}'(\tilde{S}[r])$ by P_{λ} .

2. Statement of results. Our main theorem in this paper is following

Theorem 2.1. P_{λ} establishes the following linear topological isomorphisms:

(2.1) $P_{\lambda}: \mathcal{O}'(\tilde{S}(r)) \xrightarrow{\sim} \operatorname{Exp}_{\lambda}(C^{d+1}: [|\lambda| r: L^*]) \quad (r > 1),$

(2.2) $P_{\lambda}: \mathcal{O}'(\tilde{S}[r]) \xrightarrow{\sim} \operatorname{Exp}_{\lambda}(C^{d+1}: (|\lambda| r: L^*)) \qquad (r \ge 1),$

where $\operatorname{Exp}_{\lambda}(C^{d+1}:[|\lambda|r:L^*]) = \mathcal{O}_{\lambda}(C^{d+1}) \cap \operatorname{Exp}(C^{d+1}:[|\lambda|r:L^*]), \operatorname{Exp}_{\lambda}(C^{d+1}:(|\lambda|r:L^*)) = \mathcal{O}_{\lambda}(C^{d+1}) \cap \operatorname{Exp}(C^{d+1}:(|\lambda|r:L^*)), and \mathcal{O}_{\lambda}(C^{d+1}) = \{f \in \mathcal{O}(C^{d+1}); (\mathcal{A}_{z}+\lambda^{2})f(z)=0\}.$