81. On the Existence and Uniqueness of SDE Describing an n-particle System Interacting via a Singular Potential

By Satoshi TAKANOBU

Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kôsaku YOSIDA, M. J. A., Nov. 12, 1985)

1. Introduction. Let $(\Omega, \mathcal{F}, P, \mathcal{F}_t)$ be a filtered probability space and let $[B^1(t), \dots, B^n(t)]$ be an $\mathcal{F}_t - BM_0^{2nd}$ ($B^i(t)$ is \mathbb{R}^{2d} -valued), where BM_x^r denotes an r-dim. Brownian motion starting from $x \in \mathbb{R}^r$. Let \mathcal{N} denote the set of points $(z^1, \dots, z^n) \in \mathbb{R}^{2nd}$ such that $z^i = z^j$ for some $i \neq j$ and z^{\perp} denote (y, -x) for $z = (x, y) \in \mathbb{R}^{2d}$. We consider the following stochastic differential equation (abbreviated: *SDE*) describing an interacting *n*particle system in \mathbb{R}^{2d} starting from $(z^1, \dots, z^n) \notin \mathcal{N}$:

(1) $dZ^{i}(t) = dB^{i}(t) + \sum_{j: j \neq i} \gamma_{j} \nabla^{\perp} H(Z^{i}(t) - Z^{j}(t)) dt$ $i = 1, \dots, n,$ $Z^{i}(0) = z^{i}$ $i = 1, \dots, n,$

in which,

$$\begin{split} & \varUpsilon_i \in \mathbf{R}^1, \ \neq 0 \qquad i = 1, \ \cdots, \ n, \ & H(z) = g(|z|), \quad (arpsi ^ \perp H)(z) = (arpsi H(z))^\perp \quad z \in \mathbf{R}^{2d}, \ \neq 0, \end{split}$$

where $g \in C^2(0, \infty)$ and $\nabla H = (\partial H/\partial z_1, \dots, \partial H/\partial z_{2d}) \in \mathbb{R}^{2d}$. For a typical example, if we set $g(r) = -(1/2\pi) \log r$ and d=1, then the above system of SDE describes a dynamics of n vortices in incompressible and viscous fluid in \mathbb{R}^2 , where the constants γ_i denote the vorticity of the *i*-th vortex ([1], [3]). Hence we call this the SDE representing the vortex flow. (1) is significant in connection with the nonlinear SDE in \mathbb{R}^{2d} :

$$dZ(t) = dB(t) + \int_{\mathbb{R}^{2d}} \nabla^{\perp} H(Z(t) - z) \mu_t(dz) dt,$$

where B(t) is a BM_0^{2d} and $\mu_t(dz)$ is the law of Z(t). Particularly the SDE representing the vortex flow is related to the Navier-Stokes equation ([3]).

The problem we consider is the existence and uniqueness of a solution of (1). In fact H. Osada ([4]) proved that in the vortex flow case, (1) has a unique strong solution, using an estimate of the fundamental solution of a parabolic equation with a generalized divergence form. In this paper, under a suitable condition on the singularity of g(r) at r=0 and assuming that $\{\gamma_i\}$ has the same sign, we prove the unique existence of a solution for a general (1) including the vortex flow case by a probabilistic method, which seems simpler than Osada's. But in Osada's argument, the equi-sign property of $\{\gamma_i\}$ is not necessary.

One can explain intuitively the reason why the equi-sign property of $\{\gamma_i\}$ simplifies the situation: Assuming g'(r) > 0, we can see that the drift acts on $\{Z^i, Z^j\}$ as if Z^i and Z^j rotate around $(Z^i + Z^j)/2$ clockwise with intensities $\gamma_j g'(r)$ and $\gamma_i g'(r) (r = |Z^i - Z^j|)$ respectively. This fact prevents