# 78. On the Number of Prime Factors of Integers in Short Intervals 

By Gosuke Yamano<br>Kanazawa Institute of Technology<br>(Communicated by Shokichi Iranaga, m. J. A., Oct. 14, 1985)

1. Introduction. Let $3 \leqslant n<m$ be integers. Let $\omega(m)$ denote the number of distinct prime factors of $m$. Let $1<b(n) \leqslant n$ be a sequence of positive integers. Let $A\{m ; \cdots\}$ denote the number of positive integers $m$ which satisfy some conditions. Throughout this paper $p, p_{1}, p_{2}, \ldots$ stand for prime numbers and $c_{1}, c_{2}, \cdots$ stand for positive constants. We put

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-(1 / 2) y^{2}} d y
$$

Then the following result was obtained by Babu [1].
Let $1 \leqslant a(n) \leqslant(\log \log n)^{1 / 2}$ be a sequence of real numbers tending to infinity. Then
(1) $(1 / b(n)) A\{m ; n<m \leqslant n+b(n), \omega(m)-\log \log m<x \sqrt{\log \log m}\} \longrightarrow \Phi(x)$ as $n \rightarrow \infty$, provided that $b(n) \geqslant n^{a(n)(\log \log n)^{-1 / 2}}$.

In this note we shall prove the following theorem which shows that the condition for $b(n)$ can be improved.

Theorem. Let $\alpha<\beta$ be real numbers. Let $b(n) \geqslant n^{1 /(\log \log n)}$ be a sequence of positive integers. We put $\mu=\max \{1,|\alpha|,|\beta|\}$ and

$$
\begin{aligned}
A(n, b(n), \alpha, \beta)= & A\{m ; n<m \leqslant n+b(n), \\
& \log \log m+\alpha \sqrt{\log \log m}<\omega(m)<\log \log m+\beta \sqrt{\log \log m}\} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \frac{1}{b(n)} A(n, b(n), \alpha, \beta)= \frac{1}{\sqrt{2 \pi}} \int_{\alpha}^{\beta} e^{-(1 / 2) y^{2}} d y+\boldsymbol{O}\left(\frac{\mu^{5}(\log \log \log n)^{1 / 2}}{(\log \log n)^{1 / 4}}\right) \\
&+\boldsymbol{O}\left(\mu \sqrt{\log \log n} e^{-c_{1}(\log \log n)^{2} \log b(n) / \log n}\right)
\end{aligned}
$$

The $\boldsymbol{O}$-terms are uniform with respect to a sufficiently large $n$.
This theorem implies that (1) holds if $b(n) \geqslant n^{1 / \log \log n}$, and also gives an answer for the question which was given by P. Erdös and I. Z. Ruzsa (cf. [1]). To prove the theorem we shall use Selberg's sieve method and the arguments of Erdös [3] and Tanaka [5] (cf. [2]).
2. Sieve method. Using Kubilius's lemma (Kubilius [3], lemma 1.4) we obtain the following lemma. This also can be proved directly by Selberg's sieve method.

Lemma. Let $b_{1}(n)$ be a sequence of positive integers tending to infinity. Let $g \leqslant \sqrt{b_{1}(n)}$ be a positive integer and $q$ be an integer with $0 \leqslant q$ $<g$. Let $n_{1}=[(n-q) / g]$ and $n_{2}=\left[\left(n+b_{1}(n)-q\right) / g\right]$, here $[x]$ denotes the largest integer not exceeding $x$. Let $r_{1} \geqslant 2$ with $\log r_{1} \leqslant c_{2} \log \left(n_{2}-n_{1}\right)$, where

