78. On the Number of Prime Factors of Integers in Short Intervals

By Gosuke YAMANO Kanazawa Institute of Technology

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 14, 1985)

1. Introduction. Let $3 \le n < m$ be integers. Let $\omega(m)$ denote the number of distinct prime factors of m. Let $1 < b(n) \le n$ be a sequence of positive integers. Let $A\{m; \dots\}$ denote the number of positive integers m which satisfy some conditions. Throughout this paper p, p_1, p_2, \dots stand for prime numbers and c_1, c_2, \dots stand for positive constants. We put

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-(1/2)y^2} dy.$$

Then the following result was obtained by Babu [1].

Let $1 \leq a(n) \leq (\log \log n)^{1/2}$ be a sequence of real numbers tending to infinity. Then

(1) $(1/b(n))A\{m; n \le m \le n+b(n), \omega(m)-\log\log m \le x\sqrt{\log\log m}\} \longrightarrow \Phi(x)$ as $n \to \infty$, provided that $b(n) \ge n^{a(n)(\log\log n)^{-1/2}}$.

In this note we shall prove the following theorem which shows that the condition for b(n) can be improved.

Theorem. Let $\alpha < \beta$ be real numbers. Let $b(n) \ge n^{1/(\log \log n)}$ be a sequence of positive integers. We put $\mu = \max \{1, |\alpha|, |\beta|\}$ and

 $A(n, b(n), \alpha, \beta) = A\{m; n < m \leq n + b(n),$

 $\log \log m + \alpha \sqrt{\log \log m} < \omega(m) < \log \log m + \beta \sqrt{\log \log m} \}.$ Then we have

$$\frac{1}{b(n)}A(n, b(n), \alpha, \beta) = \frac{1}{\sqrt{2\pi}} \int_{\alpha}^{\beta} e^{-(1/2)y^2} dy + O\left(\frac{\mu^5 (\log \log \log n)^{1/2}}{(\log \log n)^{1/4}}\right) \\ + O(\mu \sqrt{\log \log n} e^{-c_1 (\log \log n)^2 \log b(n) / \log n}).$$

The **O**-terms are uniform with respect to a sufficiently large n.

This theorem implies that (1) holds if $b(n) \ge n^{1/\log \log n}$, and also gives an answer for the question which was given by P. Erdös and I. Z. Ruzsa (cf. [1]). To prove the theorem we shall use Selberg's sieve method and the arguments of Erdös [3] and Tanaka [5] (cf. [2]).

2. Sieve method. Using Kubilius's lemma (Kubilius [3], lemma 1.4) we obtain the following lemma. This also can be proved directly by Selberg's sieve method.

Lemma. Let $b_1(n)$ be a sequence of positive integers tending to infinity. Let $g \leq \sqrt{b_1(n)}$ be a positive integer and q be an integer with $0 \leq q$ $\leq g$. Let $n_1 = [(n-q)/g]$ and $n_2 = [(n+b_1(n)-q)/g]$, here [x] denotes the largest integer not exceeding x. Let $r_1 \geq 2$ with $\log r_1 \leq c_2 \log (n_2 - n_1)$, where