70. On Riemann Type Integral of Functions with Values in a Certain Fréchet Space

By Yumiko SATO Department of Mathematics, Mie University (Communicated by Kôsaku YoSIDA, M. J. A., Oct. 14, 1985)

1. Introduction. Lex X be a Fréchet space [1] [5] with quasi-norm $\| \|$ such that, for every $x \in X$ and real number a, $\|ax\| = |a|^{\alpha} \|x\|$ holds for some fixed α , $0 < \alpha < 1$. We want to consider some sort of integrals of functions defined on a bounded closed interval and taking values in this space. But the theory of the Bochner integral does not apply, since X is not a Banach space, nor is the theory of Riemann integrals extended to this case because of slowness of the convergence $\|ax\| \rightarrow 0$ as $a \rightarrow 0$. In this paper we prove that Riemann type integrals exist for Hölder continuous functions with exponent γ if $\gamma > 1 - \alpha$, and we give an upper bound of the norm of the integral in terms of γ and Hölder constant. This integral is motivated by the problem of canonical representations of stationary symmetric α -stable processes.

2. Theorems. Let X be a Fréchet space with the property stated above and x_t be a function of $t \in I = [a, b]$ which has values in X. Sometimes we write $x_t = x(t)$.

Definition 1. Let \tilde{r} , δ_0 , K be positive numbers. We call x_t satisfies Condition $C_r(\delta_0, K)$ if $||x_t - x_s|| \leq K |t-s|^r$ whenever $t, s \in I$ and $|t-s| \leq \delta_0$.

Let $\{I_i, 1 \le i \le n\}$ be a partition of I such that $a = a_0 < a_1 < \cdots < a_n = b$, $I_i = [a_{i-1}, a_i]$. A pair of $\{I_i\}$ and $\{t_i\}$, $t_i \in I_i$, is denoted by $S = (\{I_i\}, \{t_i\})$. The length of I_i is denoted by $|I_i|$.

Definition 2. Suppose that x_t is a function defined on I. We say that x_t is Riemann type integrable over I if there is an element \mathcal{J} in X with the following property: For each $\varepsilon > 0$, there is $\delta > 0$ such that

$$\left\|\sum_{i=1}^{n} |I_i| x(t_i) - \mathcal{J}\right\| < \varepsilon$$

whenever $S = (\{I_i\}, \{t_i\})$ satisfies $\max_{1 \le i \le n} |I_i| \le \delta$. We call \mathcal{G} Riemann type integral and write $\mathcal{G} = \int_{I} x_i dt$.

Then we have the following theorems.

Theorem 1. If x_t satisfies Condition $C_{\gamma}(\delta_0, K)$ for some δ_0 , K and γ such that $1 \ge \gamma > 1 - \alpha$, then x_t is Riemann type integrable over I.

Theorem 2. Under the same conditions as Theorem 1, we have the following inequality:

$$\left\| \int_{I} x_{\iota} dt \right\| \leq M^{1-\alpha} |I|^{\alpha} \sup_{\iota \in I} \|x_{\iota}\| + M^{-\rho} |I|^{\alpha+\gamma} KA_{\alpha\gamma}$$

$$1 \qquad A \qquad 2^{1-2\alpha} 2^{\rho} / (2^{\rho} - 1) + 2^{\gamma} and M is any nu$$

where $\rho = \alpha + \gamma - 1$, $A_{\alpha\gamma} = 2^{1-2\alpha} 2^{\rho}/(2^{\rho}-1) + 2^{\gamma}$ and M is any number bigger than $2|I|/\delta_0$.