69. First Hitting Time for Bessel Processes

By Junji Takeuchi
Department of Mathematics, Ochanomizu University
(Communicated by Kôsaku Yosida, M. J. A., Oct. 14, 1985)

By a Bessel process with index $\alpha(\alpha>0)$, we mean a conservative diffusion process on the half line $[0, \infty)$ determined by the generator

$$
A=\frac{1}{2}\left(\frac{d^{2}}{d x^{2}}+\frac{\alpha-1}{x} \frac{d}{d x}\right) .
$$

In the case $0<\alpha<2$, an appropriate boundary condition must be imposed at the origin. In this note we restrict ourselves to the reflecting barrier case.

The following theorem for the d-dimensional Brownian motion is well known. Let σ_{r} denote the first exit time from the ball B_{r} with center 0 and radius r. Suppose $\|x\| \leqq r$, where $\|x\|$ denotes the Euclidean norm of x. Then the expect time spent in B_{r} by Brownian motion starting at x is given by

$$
E_{x}\left(\sigma_{r}\right)=\frac{r^{2}-\|x\|^{2}}{d}
$$

The object of this note is to extend this result to the Bessel processes with reflecting barrier, replacing d by general α. Further we will derive explicitly the second moment of the first passage time to the point r.

Let T_{r} denote the first hitting time of the point r by the Bessel process $X(t)$, that is,

$$
T_{r}=\inf \{t>0: \quad X(t)=r\}
$$

Proposition 1. Consider points $a<x<b$. Then we have

$$
P_{x}\left(T_{a}<T_{b}\right)= \begin{cases}\frac{x^{2-\alpha}-b^{2-\alpha}}{a^{2-\alpha}-b^{2-\alpha}} & \text { if } \alpha \neq 2 \\ \frac{\log b-\log x}{\log b-\log \alpha} & \text { if } \alpha=2\end{cases}
$$

Proof. Let $S(x)$ be a scale function for a regular diffusion on an interval I of the line. Therefore S is a strictly increasing function such that if $a<x<b$ and $a, b \in I^{\circ}$ (here I° is the interior of I), and the probability for the process reaching a before b is

$$
P_{x}\left(T_{a}<T_{b}\right)=\frac{S(b)-S(x)}{S(b)-S(a)}
$$

We may take $S(x)=\log x$ if $\alpha=2, S(x)=(2-\alpha)^{-1} x^{2-\alpha}$ if $\alpha \neq 2$ and so the desired formula is obtained.

By the standard argument in Markov process (K. Ito [2], F. B. Knight [4]), we obtain

