62. A Note on the Mean Value of the Zeta and L-functions. I

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1985)

1. The aim of the present series of notes is to develop a study on the various mean values of the Riemann zeta- and Dirichlet L-functions; here, to begin with, we investigate the square mean of L-functions viewing it as a generalization of the situation considered by Atkinson [1].

Let χ be a Dirichlet character, and put, for two complex variables u and v

$$
Q(u, v ; q)=\frac{1}{\varphi(q)} \sum_{x(\bmod q)} L(u, \chi) L(v, \bar{\chi}),
$$

where $q \geqq 2$ and φ is the Euler function. If $\operatorname{Re}(u)>1, \operatorname{Re}(v)>1$, then

$$
\begin{equation*}
Q(u, v, q)=L\left(u+v, \chi_{0}\right)+f(u, v ; q)+f(v, u ; q), \tag{1}
\end{equation*}
$$

where χ_{0} is the principal character $\bmod q$, and

$$
f(u, v ; q)=\sum_{(a, q)=1}^{q} \sum_{n=0}^{\infty} \sum_{n=1}^{\infty}(q m+a)^{-u}(q(m+n)+a)^{-v} .
$$

We need an analytic continuation of $f(u, v ; q)$ valid when $\operatorname{Re}(u)<1, \operatorname{Re}(v)$ <1. This may be obtained by Poisson's summation formula as in [1], but we take an alternative way which starts from the following integral representation: When $\operatorname{Re}(u)>0, \operatorname{Re}(v)>1, \operatorname{Re}(u+v)>2$,

$$
f(u, v ; q)=\frac{q^{-u-v}}{\Gamma(u) \Gamma(v)} \sum_{\substack{a=1 \\(a, q)=1}}^{\infty} \int_{0}^{\infty} \frac{y^{v-1}}{e^{v}-1} \int_{0}^{\infty} \frac{e^{(\alpha / q)(x+y)}}{e^{x+y}-1} x^{u-1} d x d y .
$$

To remove the singularity at $x+y=0$ we put

$$
h(z ; q)=\sum_{\substack{a,-1)=1 \\(a, q)=1}}^{q}\left(\frac{e^{(a / q) z}}{e^{z}-1}-\frac{1}{z}\right),
$$

and note that when $0<\operatorname{Re}(u)<1$ and $y>0$

$$
\int_{0}^{\infty} x^{u-1}(x+y)^{-1} d x=y^{u-1} \Gamma(u) \Gamma(1-u) .
$$

Then, we find that when $0<\operatorname{Re}(u)<1, \operatorname{Re}(u+v)>2$,

$$
\begin{align*}
& f(u, v ; q) \tag{2}\\
& \quad=\varphi(q) q^{-(u+v)} \Gamma(u+v-1) \Gamma(1-u)\{\Gamma(v)\}^{-1} \zeta(u+v-1)+g(u, v ; q),
\end{align*}
$$

where

$$
g(u, v ; q)=\frac{q^{-u-v}}{\Gamma(u) \Gamma(v)} \int_{0}^{\infty} \frac{y^{v-1}}{e^{y}-1} \int_{0}^{\infty} h(x+y ; q) x^{u-1} d x d y .
$$

Next we introduce the contour \mathcal{C} which starts at infinity, proceeds along the positive real axis to $\delta(0<\delta<1 / 2)$, describes a circle of radius δ counterclockwise round the origin and returns to infinity along the positive real axis; we have, for $0<\operatorname{Re}(u)<1, \operatorname{Re}(u+v)>2$,

