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62. A Note on the Mean Value of the Zeta and L-functions. I
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1. The aim of the present series of notes is to develop a study on the
various mean values of the Riemann zeta- and Dirichlet L-functions; here,
to begin with, we investigate the square mean of L-functions viewing it
as a generalization of the situation considered by Atkinson [1].

Let X be a Dirichlet character, and put, for two complex variables u
and v
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where ¢=2 and ¢ is the Euler function. If Re(u)>1, Re(v)>1, then
(1) Q(u, v, Q)=Lu+v, X)+f(u, v; Q)+ f(v, u; q),

where X, is the principal character mod ¢, and
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We need an analytic continuation of f(u, v; ¢) valid when Re(u)<1, Re(v)
<1. This may be obtained by Poisson’s summation formula as in [1], but
we take an alternative way which starts from the following integral repre-
sentation : When Re(u)>0, Re(v)>1, Re(u+v)>2,
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To remove the singularity at x4+y=0 we put
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and note that when 0<<Re(u)<<1 and y>0
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Then, we find that when 0<<Re(u)<1, Re (u+v)>2,
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where
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Next we introduce the contour ¢ which starts at infinity, proceeds along
the positive real axis to 6 (0<<56<1/2), describes a circle of radius é counter-
clockwise round the origin and returns to infinity along the positive real
axis; we have, for 0<Re(u)<1, Re(u+v)>2,



