60. On the Diffeomorphism Types of Elliptic Surfaces

By Masaaki Ue
Department of Mathematics, Faculty of Science, University of Tokyo (Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1985)

An elliptic surface [3] is a complex surface M with a holomorphic map π of M onto a Riemann surface S such that the inverse image $\pi^{-1}(p)$ of any general point p is an elliptic curve. Matsumoto [4] [5] proved that the diffeomorphism type of M is completely determined by its euler number $e(M)$ and the genus of S if M contains no multiple fiber. (The case when the genus of S is 0 was proved by Kas [2] and Moishezon [6].) The case when M has multiple fibers is more difficult and actually there are examples with exotic smooth structures (Dolgacev surfaces) as was proved by Donaldson [1], Morgan, and Friedman. However we can show that in many cases the diffeomorphism types of the elliptic surfaces are completely determined by their euler numbers and their fundamental groups. By Moishezon [6] we may assume that every singular fiber of the elliptic surfaces with which we are concerned is either a multiple torus ${ }_{m} I_{0}$ or a fiber of type I_{1} ([3]). Let $\pi: M \rightarrow S$ be such an elliptic surface. We can consider S as a 2-orbifold such that every point p_{i} which is the image by π of a multiple torus of multiplicity m_{i} is a cone point of cone angle $2 \pi / m_{i}$ $(i=1, \cdots, k)$. Then we have:

Theorem. Let $\pi: M \rightarrow S$ and $\pi^{\prime}: M^{\prime} \rightarrow S^{\prime}$ be the relatively minimal elliptic surfaces. Suppose that S and S^{\prime} are either euclidean or hyperbolic. Then M is diffeomorphic to M^{\prime} if and only if $e(M)=e\left(M^{\prime}\right)$ and $\pi_{1} M \cong \pi_{1} M^{\prime}$.

This theorem is divided into the following two cases.
Case 1. $e(M)\left(e\left(M^{\prime}\right)\right)>0$. This implies that $M\left(M^{\prime}\right)$ contains at least one singular fiber other than a multiple torus. In this case Theorem also holds when $S\left(S^{\prime}\right)$ is spherical with 3 cone points and is derived from:

Claim A. If S is isomorphic to S^{\prime} as 2-orbifolds, then M is diffeomorphic to M^{\prime} if and only if $e(M)=e\left(M^{\prime}\right)$.

Claim B. If S is not isomorphic to S^{\prime}, then $\pi_{1} M \neq \pi_{1} M^{\prime}$.
Case 2. $e(M)=e\left(M^{\prime}\right)=0$. In this case every singular fiber of $M\left(M^{\prime}\right)$ is a multiple torus. M and M^{\prime} are considered as 4-dimensional Seifert fiberings studied by Thornton [8] and Zieshang [9]. Theorem in this case was proved by Zieshang [9] if S and S^{\prime} are hyperbolic, and was proved by Sakamoto-Fukuhara [7] if $S=S^{\prime}=T^{2}$. In the other cases we can see that $\pi_{1} M \cong \pi_{1} M^{\prime}$ implies that there is a diffeomorphism between M and M^{\prime} (not necessarily fiber-preserving). We can also see that there are seven examples each of which admits both the structure of a T^{2}-bundle over T^{2} and

