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Let G be a reductive algebraic group over a local (or a finite) field and
g its Lie algebra. A regular nilpotent element of g gives canonically a
non-degenerate character of a maximal unipotent subgroup.. The repre-
sentation of G induced rom such a character is called a Gelfand-Graev
representation, and it is multiplicity ree if G is quasi-split. N. Kawanaka
[3] generalized this construction using Dynkin’s theory on nilpotent Ad (G)-
orbits, and associated to every nilpotent orbit an induced representation
called generalized Gelfand-Graev representation. (GGGR). In [3], the
GGGRs of finite reductive groups were studied in detail.

1. Definition of GGGRs. Let G--KAN be an Iwasawa decompo-
sition of a connected semisimple Lie group G with finite center, and
aa the corresponding decomposition of its Lie algebra g. Denote by
W the Weyl group of (g, a). Choose a positive system A of the root system
A of (, a) so that n=,ea/ g, where denotes the root space of 2. Let U
be the maximal unipotent subgroup with Lie algebra u=],ea/ _,.

For a C-manifold 9 and a Fr6chet space E, let C(f), E) (resp.
C(9, E)) denote the space of E-valued smooth functions on 9 (resp. those
with compact supports) equipped with the Schwartz topology. Let V be
a closed subgroup of G and 2 a smooth representation (see e. g. [4, p. 254])
of V on a Fr6chet space E. The left translation defines a smooth repre-
sentation of G on the space C(G, E)of f in C(G, E) satisfying f(gv)
=(v)-f(g) (g e G, v e V), which is equipped with the topology inherited
from that of C(G, E).

For a non-zero nilpotent element X e g, by Jacobson-Morozov theorem,
there exists an L.-triplet {X, H, Y}g containing X" [H, X]=2X, [H, Y]
----2Y, [X, Y]=H. By taking a suitable Ad (G)-conjugate of X, we may
assume that --H is dominant in a. Since -2(H)=0, 1 or 2 for any simple
root , we get a gradation g=zg(i) by ad (H). For i__>l, u(i)= g(k)
is a Lie subalgebra of u. Since g(i) and (]) are orthogona! with respect
to the. Killing form B of g if i+]=/=O, there exists a subalgebra u(1.5)of
(1) which has following two properties" (i)u(2)__cu(1.5) and 2 dim u(1.5)
dim u(1)+ dim u(2), (ii) B(Y, [u(1.5), u(1.5)]) (0). Then we can define

unitary character ]x of U(1.5)=exp u(1.5) by ,]x(exp Z)=exp/--i-B(Y, Z)
for Z e u(1.5).

Definition. For a non-zero nilpotent element X e S, the smooth repre-


