58. Local Isometric Embedding of Two Dimensional Riemannian Manifolds into R³ with Nonpositive Gaussian Curvature

By Gen NAKAMURA

Department of Mathematics, Josai University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1985)

As it is well known, the problem of C^{∞} local isometric embedding of a two dimensional Riemannian manifold into R^3 is a problem whether C^{∞} functions x(u, v), y(u, v), z(u, v) which satisfy

(1)
$$dx^2 + dy^2 + dz^2 = E du^2 + 2F du dv + G dv^2$$

exist in a neighborhood of a point, say (u,v)=0, when the first fundamental form $Edu^2+2Fdudv+Gdv^2$ is given. The results already known are as follows. Let K be the Gaussian curvature of the two dimensional manifold, then the classical result is that the problem is affirmatively answered if $K\neq 0$ at (u,v)=0, and a recent interesting result due to Lin [3] is that it is also affirmative if K=0, $grad\ K\neq 0$ at (u,v)=0. Now a natural question arises. Namely, is it affirmative when $K=grad\ K=0$ at (u,v)=0 and one of the following conditions holds:

- (i) Hess K(0, 0) > 0,
- (ii) Hess K(0, 0) < 0,
- (iii) Hess K(0, 0) has two eigenvalues with opposite signs?

Hereafter, for simplicity, we refer to the case with conditions K = grad K = 0 at (u, v) = 0 and (i) (resp. (ii) and resp. (iii)) by (i) (resp. (ii) and resp. (iii)).

Then what we have obtained is the following.

Theorem. The problem of C^{∞} local isometric embedding is also affirmative in the case (ii).

The idea of the proof is as follows. Since a two dimensional Riemannian manifold whose Gaussian curvature is zero is locally isometric to Euclidean space with its standard metric, it is enough to solve the following equation (2) for z under the condition $\nabla z(0,0)=0$, which assures the Gaussian curvature of the metric

$$Edu^2 + 2Fdudv + Gdv - dz^2$$

vanishes in a neighborhood of (u, v) = 0. Namely,

$$\begin{array}{ll} (2) & (z_{11} - \Gamma_{11}^t z_i)(z_{22} - \Gamma_{22}^t z_i) - (z_{12} - \Gamma_{12}^t - z_i)^2 \\ = K(EG - F^2 - Ez_2^2 - Gz_1^2 + 2Fz_1z_2) \end{array}$$

where Γ^{i}_{jk} are Christoffel symbols, z_{i} is the first derivative of z with respect to the i-th variable and z_{jk} is the second derivative with respect to the j-th and k-th variables by calling u the first variable and v the second variable.

Now we construct an approximate solution \bar{z} which satisfies (2) modulo a certain term with flatness $O(u^4)$ and linearize (2) at \bar{z} . Then the linearized