57. On a Theorem of R. H. Martin on Certain Cauchy Problems for Ordinary Differential Equations*)

By Giovanni Emmanuele
Department of Mathematics, University of Catania, Catania, Italy
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1985)

1. Introduction. Let E be a real Banach space with norm $\|\cdot\|$ and X be a locally closed and convex subset of E. If $B, C:[0,1] \times X \rightarrow E$ are two (suitable) functions, we consider the following Cauchy problem (CP)

$$
\dot{x}=B(t, x)+C(t, x), \quad x(0)=x_{0}
$$

where $x_{0} \in X$.
In the paper [2] R. H. Martin obtained the existence of a local solution of (CP) under the following assumptions;
$\left(\mathrm{C}_{1}\right) \quad B$ and C are continuous and bounded in [0, 1] $\times X$;
$\left(\mathrm{C}_{2}\right) \quad\langle x-y, B(t, x)-B(t, y)\rangle \leq \omega(t,\|x-y\|)\|x-y\|$ for all $(t, x),(t, y)$ in $[0,1] \times X$, where $\omega(t, u):[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\omega(t, 0)=0$ for all $t \in[0,1]$ and for which the Cauchy problem $\dot{u}=\omega(t, u), u(0)=0$ has the unique solution $u(t)=0$ for all $t \in[0,1]$;
$\left(\mathrm{C}_{3}\right) \quad K$ is a relatively compact subset of E such that $C(t, x) \in K$ for all $(t, x) \in[0,1] \times X$;
$\left(\mathrm{C}_{4}\right) \quad \lim \inf _{h \rightarrow+0} d(x+h(B(t, x)+C(t, x)) ; X) / h=0$ for all $(t, x) \in[0,1] \times X$;
$\left(\mathrm{C}_{5}\right) \quad C$ is uniformly continuous on $[0,1] \times X$.
A diligent examination of the proof of this result shows the important role of the assumptions $\left(\mathrm{C}_{3}\right)$ and $\left(\mathrm{C}_{5}\right)$.

The hypothesis $\left(\mathrm{C}_{3}\right)$ plays a fundamental role also in other results contained in the same paper of Martin; however, recently (see [1]) it has been weakened using the following one;
$\left(\mathrm{C}_{3}\right)^{\prime}$ there is a Lebesgue measurable subset J of [0, 1] with Lebesgue measure $m(J)=0$ for which $C(t, X)$ is relatively compact for any $t \in J^{c}\left(J^{c}\right.$ denotes the complement of J in $\left.[0,1]\right)$
in the setting of Gelfand-Phillips spaces, so improving certain results of [2].

Purpose of this note is to generalize the above cited result of Martin in general Banach spaces using $\left(\mathrm{C}_{3}\right)^{\prime}$ instead of $\left(\mathrm{C}_{3}\right)$.
2. The existence results. This section contains the announced generalization of Martin's theorem. Together $\left(\mathrm{C}_{3}\right)^{\prime}$ we shall also use the following other assumptions;
$\left(\mathrm{C}_{1}\right)^{\prime} \quad B+C$ is continuous on $[0,1] \times X$ and B and C are both bounded

[^0]
[^0]: *) Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.P.I. of Italy ($40 \%, 1983$).

