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Recently R. A. Johnson gave us a linear almost periodic differential
equation with an almost automorphic solution which is not almost periodic
[1]. In this paper we study almost automorphic functions and obtain a
characterization of them by using Veech’s result and Levitan’s N-almost
periodic functions.

We denote the set of real numbers by E. Let X be a metric space with
the metric d,. A continuous mapping z: X X R—X is called a flow on (a
phase space) X if r satisfies following two conditions :

1) n(x, 0)=2 for xe X.

2) nlx(x, t), s)=n(x, t+s) forxe X and ¢, se R.

The orbit through xe X of = is denoted by C.(x). McCX is called an
invariant set of z if C.(x)C M for every x € M. The restriction of = to an
invariant set M of r is denoted by n|M. A non-empty compact invariant
set M of r is called a minimal set of = if C,(x)=M for every x € M, where
C.(x) is the closure of C.(x). If X is itself a minimal set, we say that = is
a minimal flow on X. A flow z is said to be equicontinuous if for each
e>0 there exists a §>0 such that dy(z(x, t), n(y, £))<e for z, y ¢ X with
dx(x, y)<d and for t e R. A point ze X is called an almost automorphic
point if for each sequence {¢,} C R there exists a subsequence {t,,} C{¢,} such
that z(z, ¢,,)»ye X and z(y, —t,)—>2 as k—>co. We denote the set of
almost automorphic points of = by A(z). We can easily see that if x ¢ A(n),
then C,(x) is a minimal set of =, and that A(z) is an invariant set of . A
minimal flow =z is said to be almost automorphic if A(zx)>x¢. Let n be a
minimal flow on X. Ae R is called an eigenvalue of n if there exists a
continuous function X : X—K such that the relation X(z(x, t)) =X(x)exp (2ziit)
holds for (x, t) e X X R, where K is the unit circle in the complex plane. In
this case X is called an eigenfunction of = belonging to 2. We denote the
set of eigenvalues of = by A(z). It is well known that A(z) is a countable
subgroup of R for any minimal flow.

Proposition 1. Let n be an equicontinuous minimal flow on X. Then,
if a sequence {t,}C R satisfies that lim, ., exp 2riit,)=1 for every 2e A(xn),
then we have n(x, t,)—x as n—oo for x e X.

Proof. We denote the eigenfunction of » belonging to 1e A(x) by
%;. Since & is equicontinuous, it is well known that, if X,(x)=X,(y) (z, y € X)
for every Ae A(r), then we have x=y. Let xeX. We assume that



