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Some elementary identities in the theory of the Gaussian hypergeo-
metric series are used here to present a simple proof of Jacobi’s generating
function for the Jacobi polynomials.

In the literature there are several interesting proofs of Jacobi’s
generating function for the classical Jacobi polynomials P (x) :
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where R=(1—2xt+t*)"*. See, for example, Szegé [6, Section 4.4], Rainville
[4, Section 140], Carlitz [2], Askey [1], and Foata and Leroux [3]; see also
Srivastava and Manocha [5, p. 82]. We give here a simple proof which
uses the definition [6, p. 62, Equation (4.21.2)]
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and such elementary results from the theory of the Gaussian hypergeometric
series ,F', as the transformation [4, p. 60, Equation (4)]
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the reduction formula [4, p. 70, Problem 10]
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and the binomial expansion [4, p. 58, Equation (1)]
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