54. A New Formulation of Local Boundary Value Problem in the Framework of Hyperfunctions. III

Propagation of Micro-Analyticity up to the Boundary

By Toshinori ÔAKU
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1985)

In our previous notes ([4] and [5]) we have formulated boundary value problems in a unified way both for systems of linear partial differential equations with non-characteristic boundary and for single equations with regular singularities. In [5] we have also microlocalized this formulation. As an application of this microlocal formulation we present here some new results on propagation of micro-analyticity of solutions up to the boundary for equations satisfying a kind of micro-hyperbolicity ; we can treat a class of equations for which the boundary is totally characteristic as well.

First let us briefly recall some of the definitions and results of [4] and [5]. Put

$$
\begin{array}{ll}
M=\boldsymbol{R}^{n} \ni x=\left(x_{1}, x^{\prime}\right), & X=\boldsymbol{C}^{n} \ni z=\left(z_{1}, z^{\prime}\right), \\
N=\left\{z^{\prime}=\left(z_{2}, \cdots, z_{n}\right),\right. \\
M_{+}=\left\{x \in M ; x_{1}=0\right\}, & Y=\left\{z \in X ; z_{1}=0\right\}, \quad \tilde{M}=\boldsymbol{R} \times \boldsymbol{C}^{n-1}, \\
\left.\tilde{M}_{+} \geqq 0\right\}, & \tilde{M}_{+}=\left\{\left(x_{1}, z^{\prime}\right) \in \tilde{M} ; x_{1} \geqq 0\right\} .
\end{array}
$$

We set $\mathscr{B}_{N \mid M_{+}}=\left.\left(\iota_{*} c^{l^{-1}} \mathscr{B}_{M}\right)\right|_{N}$, where \mathscr{B}_{M} is the sheaf of hyperfunctions on M and $\iota:$ int $M_{+} \rightarrow M$ is the natural embedding. We use the notation $D=$ (D_{1}, D^{\prime}), $D^{\prime}=\left(D_{2}, \cdots, D_{n}\right)$ with $D_{j}=\partial / \partial z_{j}$. We have defined in [5] a sheaf $\mathcal{C}_{M_{+}}$on $S_{M}^{*} \tilde{M}$ and put $\mathcal{C}_{N \mid M_{+}}=\left.\mathcal{C}_{M_{+}}\right|_{L_{0}}$ with $L_{0}=\left.S_{M}^{*} \tilde{M}\right|_{N} \cong S_{N}^{*} Y$. There is an exact sequence

$$
\left.0 \longrightarrow \tilde{\tau}_{*} \tilde{\iota}^{-1} \mathcal{B O}\right|_{N} \longrightarrow \mathcal{B}_{N \mid M_{+}} \longrightarrow\left(\pi_{N / Y}\right)_{*} \mathcal{C}_{N \mid M_{+}} \longrightarrow 0,
$$

where $\tilde{\imath}: \operatorname{int} \tilde{M}_{+} \longrightarrow \tilde{M}$ is the embedding, $\pi_{N / Y}: S_{N}^{*} Y \rightarrow N$ is the projection, $\mathscr{B O}$ is the sheaf on \tilde{M} of hyperfunctions with holomorphic parameters z^{\prime}.

Let \mathscr{M} be a coherent \mathscr{D}_{X}-module (i.e. a system of linear partial differential equations with analytic coefficients) defined on a neighborhood in X of $\dot{x}=\left(0, \dot{x}^{\prime}\right) \in N$. First we assume
(N.C) Y is non-characteristic for \mathscr{M}.

Then there exist injective sheaf homomorphisms

$$
\begin{aligned}
r: \mathcal{H o m}_{D_{X}}\left(\mathscr{M}, \mathcal{B}_{N \mid M_{+}}\right) \longrightarrow \operatorname{Hom}_{D_{Y}}\left(\mathscr{M}_{Y}, \mathcal{B}_{N}\right), \\
r: \operatorname{Hom}_{D_{X}}\left(\mathscr{M}, \mathcal{C}_{N \mid M_{+}}\right) \longrightarrow \operatorname{Hom}_{D_{Y}}\left(\mathscr{M}_{Y}, \mathcal{C}_{N}\right)
\end{aligned}
$$

compatible with each other, where \mathscr{M}_{Y} is the tangential system of \mathscr{M} to Y (Corollary of [4] and Theorem 3 of [5]).

Next let us assume

$$
\begin{align*}
& \mathscr{M}=\mathscr{D}_{X} / \mathscr{D}_{X} P \text { with } P=a(x)\left(\left(z_{1} D_{1}\right)^{m}+A_{1}\left(z, D^{\prime}\right)\left(z_{1} D_{1}\right)^{m-1}+\cdots+\right. \tag{R.S}\\
& \left.A_{m}\left(z, D^{\prime}\right)\right) \text {; here } a(z) \text { is a holomorphic function with } a(\grave{x}) \neq 0,
\end{align*}
$$

