53. On Strong Hyperbolicity for First Order Systems

By Tatsuo NISHITANI

Department of Mathematics, College of General Education, Osaka University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1985)

§ 1. Introduction. In this note, we shall study strong hyperbolicity for first order hyperbolic systems;

$$L(x, D) = -D_0 + \sum_{j=1}^{d} A_j(x)D_j + B(x),$$

where $A_j(x)$, B(x) are $N \times N$ matrices with smooth entries defined near the origin in R^{d+1} with coordinates $x = (x_0, x') = (x_0, x_1, \dots, x_d)$ and $D_j = -i(\partial/\partial x_j)$. Denote $\xi = (\xi_0, \xi') = (\xi_0, \xi_1, \dots, \xi_d)$ and by $h(x, \xi)$ the determinant of the principal symbol $L_1(x, \xi)$ of L(x, D);

$$L_{1}(x, \xi) = -\xi_{0} + \sum_{j=1}^{d} A_{j}(x)\xi_{j},$$

and say that $L_1(x, \xi)$ is strongly hyperbolic if the Cauchy problem for L(x, D) is C^{∞} well posed near the origin for any lower order term B(x) ([8]). Throughout this paper, we assume that $h(x, \xi)$ is hyperbolic with respect to dx_0 near the origin, i.e. $h(x, \xi_0, \xi') = 0$ has only real roots for any (x, ξ') , $\xi' \in R^a \setminus 0$, $x \in R^{d+1}$ (x near the origin) and furthermore we assume that the multiplicities of these characteristic roots are at most two.

We shall prove that if $L_1(x, \xi)$ is strongly hyperbolic near the origin then at every point $(x, \xi) \in T^*R^{d+1} \setminus 0$ (x near the origin), $L_1(x, \xi)$ is effectively hyperbolic or diagonalizable (that is similar to a diagonal matrix). Conversely when $L_1(x, \xi)$ is effectively hyperbolic at every $\rho = (\bar{x}, \bar{\xi})$ with $\pi(\rho) = (\bar{x}, \bar{\xi}')$, we know that for any B(x), there is a parametrix of L(x, D) near $(\bar{x}', \bar{\xi}')$ with finite propagation speed of wave front sets ([10]), where π is the projection from T^*R^{d+1} to $R \times T^*R^d$ off ξ_0 . In case $L_1(x, \xi)$ is diagonalizable near every ρ with $\pi(\rho) = (\bar{x}, \bar{\xi}')$, we shall show, under some additional conditions, that $L_1(x, \xi)$ is smoothly symmetrizable near $(\bar{x}, \bar{\xi}')$. Hence for any B(x), L(x, D) has a parametrix near $(\bar{x}', \bar{\xi}')$ with finite propagation speed of wave front sets.

§ 2. Notations and results. Let $L_0(x, \xi)$ be the symbol of degree 0 of $L(x, \xi)$, ${}^{\circ\circ}L_1(x, \xi)$ the cofactor matrix of $L_1(x, \xi)$, and $L^s(x, \xi)$ the subprincipal symbol of $L(x, \xi)$;

$$L^{s}(x, \xi) = L_{0}(x, \xi) + \frac{i}{2} \sum_{j=0}^{d} (\partial^{2}/\partial \xi_{j} \partial x_{j}) L_{1}(x, \xi).$$

We denote by $F(\rho)$ the Fundamental (Hamilton) matrix corresponding to the Hessian Q of h/2 at ρ and set

$$Tr^+h(\rho) = \sum \mu_i$$