53. On Strong Hyperbolicity for First Order Systems

By Tatsuo Nishitani
Department of Mathematics, College of General Education, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1985)

§ 1. Introduction. In this note, we shall study strong hyperbolicity for first order hyperbolic systems;

$$
L(x, D)=-D_{0}+\sum_{j=1}^{d} A_{j}(x) D_{j}+B(x)
$$

where $A_{j}(x), B(x)$ are $N \times N$ matrices with smooth entries defined near the origin in R^{d+1} with coordinates $x=\left(x_{0}, x^{\prime}\right)=\left(x_{0}, x_{1}, \cdots, x_{d}\right)$ and D_{j} $=-i\left(\partial / \partial x_{j}\right)$. Denote $\xi=\left(\xi_{0}, \xi^{\prime}\right)=\left(\xi_{0}, \xi_{1}, \cdots, \xi_{d}\right)$ and by $h(x, \xi)$ the determinant of the principal symbol $L_{1}(x, \xi)$ of $L(x, D)$;

$$
L_{1}(x, \xi)=-\xi_{0}+\sum_{j=1}^{d} A_{j}(x) \xi_{j}
$$

and say that $L_{1}(x, \xi)$ is strongly hyperbolic if the Cauchy problem for $L(x, D)$ is C^{∞} well posed near the origin for any lower order term $B(x)$ ([8]). Throughout this paper, we assume that $h(x, \xi)$ is hyperbolic with respect to $d x_{0}$ near the origin, i.e. $h\left(x, \xi_{0}, \xi^{\prime}\right)=0$ has only real roots for any (x, ξ^{\prime}), $\xi^{\prime} \in R^{d} \backslash 0, x \in R^{d+1}$ (x near the origin) and furthermore we assume that the multiplicities of these characteristic roots are at most two.

We shall prove that if $L_{1}(x, \xi)$ is strongly hyperbolic near the origin then at every point $(x, \xi) \in T^{*} R^{d+1} \backslash 0$ (x near the origin), $L_{1}(x, \xi)$ is effectively hyperbolic or diagonalizable (that is similar to a diagonal matrix). Conversely when $L_{1}(x, \xi)$ is effectively hyperbolic at every $\rho=(\bar{x}, \bar{\xi})$ with $\pi(\rho)$ $=\left(\bar{x}, \bar{\xi}^{\prime}\right)$, we know that for any $B(x)$, there is a parametrix of $L(x, D)$ near ($\bar{x}^{\prime}, \bar{\xi}^{\prime}$) with finite propagation speed of wave front sets ([10]), where π is the projection from $T^{*} R^{d+1}$ to $R \times T^{*} R^{d}$ off ξ_{0}. In case $L_{1}(x, \xi)$ is diagonalizable near every ρ with $\pi(\rho)=\left(\bar{x}, \bar{\xi}^{\prime}\right)$, we shall show, under some additional conditions, that $L_{1}(x, \xi)$ is smoothly symmetrizable near $\left(\bar{x}, \bar{\xi}^{\prime}\right)$. Hence for any $B(x), L(x, D)$ has a parametrix near ($\bar{x}^{\prime}, \bar{\xi}^{\prime}$) with finite propagation speed of wave front sets.
§2. Notations and results. Let $L_{0}(x, \xi)$ be the symbol of degree 0 of $L(x, \xi),{ }^{c \circ} L_{1}(x, \xi)$ the cofactor matrix of $L_{1}(x, \xi)$, and $L^{s}(x, \xi)$ the subprincipal symbol of $L(x, \xi)$;

$$
L^{s}(x, \xi)=L_{0}(x, \xi)+\frac{i}{2} \sum_{j=0}^{d}\left(\partial^{2} / \partial \xi_{j} \partial x_{j}\right) L_{1}(x, \xi)
$$

We denote by $F(\rho)$ the Fundamental (Hamilton) matrix corresponding to the Hessian Q of $h / 2$ at ρ and set

$$
T r^{+} h(\rho)=\sum \mu_{j}
$$

