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1. Introduction. In this note, we shall study strong hyperbolicity
for first order hyperbolic systems;

d

L(x, D)= --Do+ A(x)D+B(x),
where A(x), B(x) are NN matrices with smooth entries defined near the
origin in RTM with coordinates x=(Xo, X’)=(Xo, x, ..., x) and D
=-i(/3x). Denote =($o, ’)=($0, ," ", ) and by h(x, ) the determi-
nant of the principal symbol L(x, ) of L(x, D);

d

L,(x, )----0-t- A(x),
=1

and say that L(x, ) is strongly hyperbolic if the Cauchy problem for
L(x, D)is C well posed near the origin for any lower order term B(x)
([8]). Throughout this paper, we. assume that h(x, ) is hyperbolic with
respect to dxo near the origin, i.e. h(x, o, ’)--0 has only real roots or any
(x, ’), ’ e R\0, x e R+ (x near the origin) and urthermore we assume
that the multiplicities of these characteristic roots are at most two.

We shall prove that if L(x, ) is strongly hyperbolic near the. origin
then at every point (x, ) e T*R \0 (x near the origin), L,(x, ) is effectively
hyperbolic or diagonalizable (that is similar to a diagonal matrix). Con-
versely when L:(x, )is effectively hyperbolic at every p--(, ) with z(o)
--(, $’), we know that for any B(x), there is a parametrix o.f L(x, D) near
(’, $’)with finite propagation speed of wave front sets ([10]), where z is
the projection from T*R+ to RT*R off 0. In case L(x, )is diagonal-
izable near every p with z(p)=(, $’), we shall show, under some additional
conditions, that L:(x, ) is smoothly symmetrizable near (x, ’). Hence for
any B(x), L(x, D) has a parametrix near (’, $’) with finite, propagation
speed of wave ront sets.

2. Notations and results. Let Lo(x, ) be the symbol of degree 0 of
L(x, ), L:(x, ) the cofactor matrix of L(x, ), and L’(x, ) the subprin-
cipal symbol of L(x, );

i (3/3x)L,(x, ).Ls(x, )= Lo(x, )+
=0

We denote by F(p) the Fundamental (Hamilton) matrix corresponding to
the Hessian Q of hi2 at p and set

Tr+ h(p)


