48. Continuum of Ideals in $R(\Phi_2) \otimes_{\max} R'(\Phi_2)$

By Liang Sen Wu

Department of Mathematics, East China Normal University

(Communicated by Kôsaku Yosida, M. J. A., June 11, 1985)

Let Φ_2 be the free group on two generators a and b. Let $\mathcal{H} = \mathcal{L}^2(\Phi_2)$ be the Hilbert space of all complex valued functions f(g) on Φ_2 such that

$$\sum_{g \in \Phi_2} |f(g)|^2 < \infty$$
.

For each $g_1 \in \Phi_2$ we define the unitary operator $U(g_1)$ on \mathcal{H} given by $(U(g_1)f)(g) = f(g_1^{-1}g)$, for all $f \in \mathcal{H}$.

The von Neumann algebra generated by $\{U(g), g \in \Phi_2\}$ is denoted by $R(\Phi_2)$. It is known that $R(\Phi_2)$ is a II_1 -factor.

The purpose of this paper is to show the existence of continuum of ideals in $R(\Phi_2) \bigotimes_{\max} R'(\Phi_2)$.

We will use the following universal property of the projective C^* -tensor product.

Lemma 1. Given C*-algebras A_1 , A_2 and B, if $\pi_1:A_1{\longrightarrow} B$ and $\pi_2:A_2{\longrightarrow} B$ are homomorphisms with commuting ranges, then there exists a unique homomorphism π of the projective C*-tensor product $A_1{\otimes_{\max}} A_2$ into B such that

$$\pi(x_1 \otimes x_2) = \pi_1(x_1)\pi_2(x_2)$$
 $x_1 \in A_1, x_2 \in A_2,$

and the image $\pi(A_1 \otimes_{\max} A_2)$ is the C*-subalgebra of B generated by $\pi_1(A_1)$ and $\pi_2(A_2)$ (cf. [4, p. 207]).

We denote by $\operatorname{Int}(R(\Phi_2))$ and $\operatorname{Aut}(R(\Phi_2))$ the set of all inner automorphisms and that of all automorphisms of $R(\Phi_2)$ respectively, with the topology of strong pointwise convergence in $R(\Phi_2)$.

Lemma 2. Int $(R(\Phi_2))$ is closed in Aut $(R(\Phi_2))$.

For the proof see [3, Corollary 3.8].

In the following we will use the Connes's characterization of approximately inner automorphisms.

Lemma 3. Let N be a factor of type II_1 with separable preduction in $\mathcal{K}=L^2(N,\tau)$. Then the following conditions are equivalent for $\theta \in \operatorname{Aut}(N)$,

- (a) $\theta \in \overline{\operatorname{Int}(N)}$;
- (b) There exists an automorphism of the C*-algebra generated by N and N' in \mathcal{K} which is θ on N and identity on N' ([2, p. 89]).

In Lemma 1, if we put $A_1 = R(\Phi_2)$, $A_2 = R'(\Phi_2)$ and π_1 , π_2 as identical map, there exists a homomorphism η such that

$$R \underset{\max}{\bigotimes} R' \xrightarrow{\eta} C^*(R, R'), \ R \underset{\max}{\bigotimes} R'/I \cong C^*(R, R')$$

in which I is Ker (η) .