47. The Existence of Spectral Decompositions in L^{p}-Subspaces

By Earl Berkson*),t) and T. A. Gillespie**),tt)
(Communicated by Kôsaku Yosida, m. J. A., June 11, 1985)

1. Introduction. In this note we outline the main results of a forthcoming paper [4]. Throughout we suppose that μ is an arbitrary measure, $1<p<\infty$, and Y is a subspace of $L^{p}(\mu)$. An invertible operator $V \in \mathscr{B}(Y)$ will be called power-bounded provided $\sup _{n \in \boldsymbol{Z}}\left\|V^{n}\right\|<\infty$, where Z denotes the additive group of integers. We show that $\left\{V^{n}\right)_{n=-\infty}^{\infty}$ is automatically the Fourier-Stieltjes transform of a spectral family of projections concentrated on $[0,2 \pi]$ (see $[1, \S 2]$ for definitions and the Riemann-Stieltjes integration theory of spectral families). We deduce that every bounded, oneparameter group on Y is the Fourier-Stieltjes transform of a spectral family of projections $E(\cdot): R \rightarrow \mathcal{B}(X)$. This result generalizes work in [2], [8], and can be used to obtain a complete analogue for $L^{p}(\mathcal{K})$ of Helson's correspondence $[10, \S 2.3]$ between cocycles and the normalized, simply invariant subspaces of $L^{2}(\mathcal{K})$, where \mathcal{K} is a compact abelian group with archimedean ordered dual. In particular, in $L^{p}(\mathcal{K})$ every such invariant subspace is the range of a bounded projection.
2. Abstract results. An operator U on a Banach space X is called trigonometrically well-bounded [3] provided

$$
U=\int_{[0,2 \pi]}^{\oplus} e^{i \lambda} d E(\lambda)
$$

for a spectral family of projections $E(\cdot): R \rightarrow \mathcal{B}(X)$ such that the strong left-hand limits $E\left(0^{-}\right), E\left((2 \pi)^{-}\right)$are $0, I$, respectively. $E(\cdot)$ is necessarily unique, and will be called the spectral decomposition of U. Let $B V(T)$ be the Banach algebra of complex-valued functions having bounded variation on the unit circle. For $f \in B V(T)$ put

$$
F_{1}(t)=\lim _{s \rightarrow t^{+}} f\left(e^{i s}\right), \quad F_{2}(t)=\lim _{s \rightarrow t^{-}} f\left(e^{i s}\right)
$$

for $t \in \boldsymbol{R}$, and let \hat{f} be the Fourier transform of f.
(2.1) Theorem. Let $U \in \mathscr{B}(X)$ be trigonometrically well-bounded and power-bounded, and suppose $f \in B V(T)$. Then $\sum_{n=-N}^{N} \hat{f}(n) U^{n}$ converges in the strong operator topology, as $N \rightarrow+\infty$, to

$$
2^{-1} \int_{[0,2 \pi]}^{\oplus}\left(F_{1}+F_{2}\right) d E,
$$

where $E(\cdot)$ is the spectral decomposition of U.
Proof. For $t \in R, x \in X$, let

[^0]
[^0]: *) Department of Mathematics, University of Illinois.
 **) Department of Mathematics, University of Edinburgh.
 ${ }^{\dagger}$) Supported by the National Science Foundation (U.S.A.).
 ${ }^{\text {tt) }}$ Supported by the Science and Engineering Research Council (U.K.).

