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Oo Introduction. Let X be a no.n-singular algebraic variety with
dim X--N over an algebraically closed field. In this paper we. shall prove
the following formula

N/] CN-(t).K_.rRZ(tKx)--r=o (N--2r)
Here the (t) denote, the Bernoulli polynomials, defined by

e--I n!
Rn--Rn(c, ..., Cn) is a polynomial of Chern classes, defined by

T’n+ (c, ..., Cn)=(1/2)cR(c, ..., c.)
where T is the r-th todd class of X.

1. Preliminaries. We start by recalling the ollowing elementary
facts.

Lemma 1.
(1-1)
(1-2)
(1-3)
(1-4)

Proof.

(1-6)

0(t)=l, (t)=t-(1/2).
(d/ dt)(t) n. Cn- l(t)

2n+ 1(0) 2n+ 1(1/2) 0 for nl.
Cn(t+l)--(t)=nt-.

Cn(t) E 7 (O)t_ _mV_.n(t)=E (0)t-r=o r =o 2r

o 2r 2m-2r+1
We only prove (1-6). From (1-5) we have

2m+1 =o 2r 2m--2r+l 2

0=@/2m 2r(0) 1 1
\ ]2r 2m--2r+1 2- + 2 +

From this (1-6) follows. Q.E.D.
We define the symbols c, ..., c p, ..., p;z, ..., z; x, ..., x; and

polynomials A(p, ..., p), T(c, ..., c) (ONi<N) and R(c, ..., c.) (0<=]
__< [N/2]) as follows"
( 1 ) z=x for 1Ni<N.
(2) p is the i-th elementary symmetric function of x, ..., x.
(3) c is the i-th elementary symmetric function o.f z, ..., z.

Put t=1/2. Then


