The Riemann-Roch Theorem and Bernoulli Polynomials

By Tetsuya Ando Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., June 11, 1985)

0. Introduction. Let X be a non-singular algebraic variety with $\dim X = N$ over an algebraically closed field. In this paper we shall prove the following formula

$$\chi(tK_X) = \sum_{r=0}^{\lceil N/2 \rceil} \frac{\phi_{N-2r}(t)}{(N-2r)!} K_X^{N-2r} R_r.$$

Here the $\phi_n(t)$ denote the Bernoulli polynomials, defined by

$$\frac{xe^{tx}}{e^x-1} = \sum_{n} \frac{\phi_n(t)}{n!} x^n,$$

 $R_n = R_n(c_1, \dots, c_{2n})$ is a polynomial of Chern classes, defined by $T_{2n+1}(c_1, \dots, c_{2n}) = (1/2)c_1R_n(c_1, \dots, c_{2n})$

where T_r is the r-th todd class of X.

Preliminaries. We start by recalling the following elementary facts.

Lemma 1.

- (1-1) $\phi_0(t) = 1, \quad \phi_1(t) = t - (1/2).$
- $(d/dt)\phi_n(t) = n \cdot \phi_{n-1}(t)$. (1-2)
- $\phi_{2n+1}(0) = \phi_{2n+1}(1/2) = 0$ for $n \ge 1$. $\phi_n(t+1) \phi_n(t) = nt^{n-1}$. (1-3)
- (1-4)

(1-5)
$$\phi_n(t) = \sum_{r=0}^n \binom{n}{r} \phi_r(0) t^{n-r}, \qquad \phi_{2n}(t) = \sum_{r=0}^m \binom{2m}{2r} \phi_{2r}(0) t^{2m-2r} - mt^{2m-1}.$$

(1-6)
$$\sum_{r=0}^{m} {2m \choose 2r} \frac{2^{2r} \phi_{2r}(0)}{2m-2r+1} = 1.$$

Proof. We only prove (1-6). From (1-5) we have
$$\frac{\phi_{2m+1}(t)}{2m+1} = \sum_{r=0}^{m} {2m \choose 2r} \frac{\phi_{2r}(0)}{2m-2r+1} t^{2m-2r+1} - \frac{1}{2} t^{2m}.$$

Put t = 1/2.

$$0 = \sum_{r=0}^{m} {2m \choose 2r} \frac{\phi_{2r}(0)}{2m - 2r + 1} \cdot \frac{1}{2^{2m-2r+1}} - \frac{1}{2^{2m+1}}.$$

From this (1-6) follows.

We define the symbols c_1, \dots, c_N ; p_1, \dots, p_N ; z_1, \dots, z_N ; x_1, \dots, x_N ; and polynomials $A_i(p_1, \dots, p_i)$, $T_i(c_1, \dots, c_i)$ $(0 \le i \le N)$ and $R_j(c_1, \dots, c_{2j})$ $(0 \le j$ $\leq [N/2]$) as follows:

- $z_i = x_i^2$ for $1 \le i \le N$. (1)
- p_i is the *i*-th elementary symmetric function of x_1, \dots, x_N (2)
- c_i is the *i*-th elementary symmetric function of z_1, \dots, z_N .