40. On Homotopy Classes of Cochain Maps

By Shin-ichi Katayama
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., May 13, 1985)

1. Let R be a commutative ring. By a cochain complex over R, we mean a pair (C, δ) where

$$
C=\sum_{n \in Z} C^{n}
$$

is a graded R-module and $\delta: C \rightarrow C$ is a map of degree 1 such that $\delta^{2}=0$. We often abbreviate (C, δ) to C if there is no fear of confusion. Let (A, δ) and $\left(B, \delta^{\prime}\right)$ be cochain complexes over R. Then a cochain map from A to B is a graded module homomorphism $f: A \rightarrow B$ of degree 0 such that $\delta^{\prime} f$ $=f \delta$. Two cochain maps $f: A \rightarrow B$ and $g: A \rightarrow B$ are said to be homotopic if there exists a graded module homomorphism $\Delta: A \rightarrow B$ of degree -1 such that $\delta^{\prime} \Delta+\Delta \delta=f-g$. In this case we write $f \simeq g$. We denote the abelian group of homotopy classes of cochain maps $A \rightarrow B$ by $[A, B]$. Let (M, δ) and (N, δ^{\prime}) be cochain complexes over R and $0 \rightarrow M \rightarrow X \rightarrow N \rightarrow 0$ be an exact sequence of cochain complexes over R. This exact sequence is called weakly splitting if the extension splits as that of graded modules, that is, the extension $0 \rightarrow M^{n} \rightarrow X^{n} \rightarrow N^{n} \rightarrow 0$ splits as the extension of R-modules for every dimension $n \in Z$. We say the weakly splitting extensions $0 \rightarrow M \rightarrow X$ $\rightarrow N \rightarrow 0$ and $0 \rightarrow M \rightarrow X^{\prime} \rightarrow N \rightarrow 0$ are equivalent if there exists a cochain map $\alpha: X \rightarrow X^{\prime}$ such that the diagram

is commutative. Thus this equivalence relation is given by substituting the cochain maps for all the homomorphisms in the usual extensions of modules. We denote by $E_{R}(N, M)$ the set of all equivalence classes of weakly splitting extensions of N and M.

For a cochain map $f: A \rightarrow B$ the mapping cone $C(f)$ is defined to be $C(f)=A \oplus B$ (as graded modules) and $\delta(a, b)=\left(-\delta a, f a+\delta^{\prime} b\right)$ (for every $a \in A^{n+1}$ and $b \in B^{n}$).
Then we have a weakly splitting extension of cochain complexes

$$
\begin{equation*}
0 \longrightarrow B \longrightarrow C(f) \longrightarrow A_{\#} \longrightarrow 0 \tag{1}
\end{equation*}
$$

where $\left(A_{\sharp}, \delta_{\sharp}(f)\right)$ is defined by

$$
A_{\#}^{n}=A^{n+1}, \quad \delta_{\sharp}(f) a=-\delta a \quad\left(\text { for every } a \in A_{\sharp}^{n}\right) .
$$

We denote by $[f]$ the class of $[A, B]$ to which the cochain map $f: A \rightarrow B$ belongs. Let us denote the class of $E_{R}\left(A_{\#}, B\right)$ to which the extension (1) belongs by $\{C(f)\}$. The object of this note is to show an isomorphism

