40. On Homotopy Classes of Cochain Maps

By Shin-ichi KATAYAMA

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., May 13, 1985)

1. Let R be a commutative ring. By a cochain complex over R, we mean a pair (C, δ) where

$$C = \sum_{n \in Z} C^n$$

is a graded *R*-module and $\delta: C \to C$ is a map of degree 1 such that $\delta^2 = 0$. We often abbreviate (C, δ) to *C* if there is no fear of confusion. Let (A, δ) and (B, δ') be cochain complexes over *R*. Then a cochain map from *A* to *B* is a graded module homomorphism $f: A \to B$ of degree 0 such that $\delta' f = f\delta$. Two cochain maps $f: A \to B$ and $g: A \to B$ are said to be homotopic if there exists a graded module homomorphism $\Delta: A \to B$ of degree -1 such that $\delta' \Delta + \Delta \delta = f - g$. In this case we write $f \simeq g$. We denote the abelian group of homotopy classes of cochain maps $A \to B$ by [A, B]. Let (M, δ) and (N, δ') be cochain complexes over *R* and $0 \to M \to X \to N \to 0$ be an exact sequence of cochain complexes over *R*. This exact sequence is called weakly splitting if the extension splits as that of graded modules, that is, the extension $0 \to M^n \to X^n \to N^n \to 0$ splits as the extension $0 \to M \to X' \to N \to 0$ are equivalent if there exists a cochain map $\alpha: X \to X'$ such that the diagram

$$\begin{array}{cccc} 0 \longrightarrow M \longrightarrow X \longrightarrow N \longrightarrow 0 \\ & & & & \\ 0 \longrightarrow M \longrightarrow X' \longrightarrow N \longrightarrow 0 \end{array}$$

is commutative. Thus this equivalence relation is given by substituting the cochain maps for all the homomorphisms in the usual extensions of modules. We denote by $E_R(N, M)$ the set of all equivalence classes of weakly splitting extensions of N and M.

For a cochain map $f: A \rightarrow B$ the mapping cone C(f) is defined to be $C(f) = A \oplus B$ (as graded modules) and $\delta(a, b) = (-\delta a, fa + \delta'b)$ (for every $a \in A^{n+1}$ and $b \in B^n$).

Then we have a weakly splitting extension of cochain complexes

$$(1) \qquad \qquad 0 \longrightarrow B \longrightarrow C(f) \longrightarrow A_* \longrightarrow 0$$

where $(A_{\sharp}, \delta_{\sharp}(f))$ is defined by

 $A_{\sharp}^{n} = A^{n+1}, \quad \delta_{\sharp}(f)a = -\delta a \quad \text{(for every } a \in A_{\sharp}^{n}\text{)}.$

We denote by [f] the class of [A, B] to which the cochain map $f: A \rightarrow B$ belongs. Let us denote the class of $E_R(A_*, B)$ to which the extension (1) belongs by $\{C(f)\}$. The object of this note is to show an isomorphism