39. Polynomial Difference Equations which have Entire Solutions of Finite Order

By Yoshikuni Nakamura
Mathematics Institute, College of Arts and Sciences, Chiba University
(Communicated by Kôsaku Yosida, m. J. A., May 13, 1985)

1. Introduction. Here we consider the difference equation
(1.1) $\quad y(x+1)^{m}=a_{p} y(x)^{p}+a_{p-1} y(x)^{p-1}+\cdots+a_{1} y(x)+a_{0}$,
where $a_{p}, a_{p-1}, \cdots, a_{1}, a_{0}$ are constants, $a_{p} \neq 0$.
When $m=1$, the equation (1.1) has been studied by several authors [1], [4], [5]. We consider here mainly the case $m \geqq 2$.

We proved in [2] the following theorem.
Theorem A. Let $R_{j}(x, w), j=0,1$, be rational functions :

$$
\begin{aligned}
& R_{j}(x, w)=P_{j}(x, w) / Q_{j}(x, w) \\
& P_{j}(x, w)=a_{p_{j}}^{(j)}(x) w^{p_{j}}+\cdots+a_{0}^{(j)}(x) \\
& Q_{j}(x, w)=b_{q_{j}}^{(j)}(x) w^{q_{j}}+\cdots+b_{0}^{(j)}(x)
\end{aligned}
$$

in which $a_{k}^{(j)}(x)$ and $b_{h}^{(j)}(x), k=0, \cdots, p_{j}, h=0, \cdots, q_{j}, j=0,1$, are polynomials, $a_{p_{j}}^{(j)}(x) b_{q_{j}}^{(j)}(x) \not \equiv 0$. Consider the difference equation

$$
\begin{equation*}
R_{1}(x, y(X+1))=R_{0}(x, y(x)) \tag{1.2}
\end{equation*}
$$

Suppose (1.2) possesses a meromorphic solution $y(x)$, which is of finite order. Then, either $y(x)$ is rational, or there holds

$$
\max \left(p_{1}, q_{1}\right)=\max \left(p_{0}, q_{0}\right)
$$

By this theorem, we know that the equation (1.1) admits a meromorphic solution of finite order only if

$$
m=p
$$

In particular, when $m=1$, it is easy to see that (1.1) admits an entire solution of finite order if $p=1$. Our aim in this note is to determine the form of the equations (1.1) which have entire solutions of finite order, when $m \geqq 2$. Our results are as follows.

Theorem 1. The equation (1.1) possesses an entire nontrivial solution of finite order if and only if it is either of the form
(1.3) $\quad m$ is even and $y(x+1)^{m}=\left(A^{2}-y(x)^{2}\right)^{m / 2}, A \neq 0$,
i.e.,

$$
\begin{gather*}
y(x+1)^{2}=A^{2}-y(x)^{2} \tag{1.3'}\\
y(x+1)^{m}=(a y(x)+b)^{m}
\end{gather*}
$$

or of the form
(1.4)

By the way, we note that the equation (1.3) is satisfied by

$$
y(x)=A \sin (\pi x / 2) \quad \text { and } \quad y(x)=A \cos (\pi x / 2)
$$

The proof of Theorem 1 is implied in the following lemmas.
Lemma 2. The equation (1.1) can not have an entire nontrivial solu-

