38. A Monotone Boundary Condition for a Domain with Many Tiny Spherical Holes

By Satoshi Kaizu
Department of Information Mathematics, University of Electro-Communications

(Communicated by Kôsaku Yosida, m. J. A., May 13, 1985)

1. Introduction. Let R^{N} be divided into an infinitely many number of cubes $C_{\varepsilon}^{i}, i \in N$, with volume of $(2 \varepsilon)^{N}$. Let $B^{i}\left(r_{\varepsilon}\right)$ be a closed ball of radius $r_{\varepsilon}(<\varepsilon)$ set in the center of C_{ε}^{i}, here $N \geqq 3$. Let Ω be a bounded domain with smooth boundary Γ. We denote by F_{ε} the union of all balls $B^{i}\left(r_{\varepsilon}\right)(\subset \Omega)$ such that dist $\left(B^{i}\left(r_{\varepsilon}\right), \Gamma\right) \geqq \varepsilon$. Let $\Omega_{\varepsilon}=\Omega \backslash F_{\varepsilon}$. Let ν be the outer unit normal of $\partial \Omega_{\varepsilon}$. For a positive number L_{ε} and a non-negative number c_{ε} we consider a monotone function β_{ε} defined by (i) $\beta_{\varepsilon}(r)=\left(r+c_{\varepsilon}\right) / L$ for $r \leqq-c_{\varepsilon}$, (ii) $\beta_{\varepsilon}(r)=0$ for $|r| \leqq c_{\varepsilon}$, (iii) $\beta_{\varepsilon}(r)=\left(r-c_{\varepsilon}\right) / L$ for $r \geqq c_{\varepsilon}$. In this paper we regard functions of $L^{2}\left(\Omega_{\varepsilon}\right)$ as functions of $L^{2}(\Omega)$ vanishing outside Ω_{ε}. For $f \in L^{2}(\Omega)$ we consider the boundary value problem:

$$
\begin{array}{cc}
-\Delta u_{\varepsilon}=f & \text { a.e. in } \Omega_{\varepsilon} \tag{1}\\
\frac{\partial u_{\varepsilon}}{\partial \nu}+\beta_{\varepsilon}\left(u_{\varepsilon}\right)=0 & \text { a.e. on } \partial \Omega_{\varepsilon}
\end{array}
$$

The problem admits a unique solution $u_{\varepsilon} \in H^{2}\left(\Omega_{\varepsilon}\right)$ (cf. [2]). We consider the behavior of u_{ε} under the condition

$$
\begin{equation*}
\sup L_{\varepsilon}<\infty, c_{\varepsilon} \rightarrow 0, r_{\varepsilon} \rightarrow 0 \quad \text { and } \quad n_{\varepsilon} \rightarrow \infty \tag{3}
\end{equation*}
$$

where n_{ε} is the number of holes of Ω_{ε}. Let $|\Omega|$ be the measure of Ω. In this paper the relation $n_{\varepsilon} \sim|\Omega| /(2 \varepsilon)^{N}$ as $\varepsilon \rightarrow 0$ is very often used. Let b be a multivalued monotone function defined by (iv) the domain $D(b)=\{0\}$, (v) $b(0)=\boldsymbol{R}$. Replacing (2) by $\partial u_{\varepsilon} / \partial \nu+b\left(u_{\varepsilon}\right) \ni 0$ we obtain the Dirichlet boundary value problem.

The behavior of the Laplacian on domains with many tiny spherical holes, concerning the Dirichlet boundary condition, has been studied by M. Kac [3], J. Rauch and M. Taylor [6], S. Ozawa [5], D. Cioranescu and F. Murat [1] and other authors. Among them we shall extend the result of Cioranescu and Murat to the direction of the monotone boundary condition (2). Intuitively we have $\beta_{\varepsilon} \rightarrow b$ as $L_{\varepsilon} \rightarrow 0$ and $c_{\varepsilon} \rightarrow 0$. Thus the above idea may be natural. For another extension see S. Kaizu [4].

Theorem. Let u_{ε} be the solution of (1), (2) and let $\tilde{u}_{\varepsilon} \in H^{1}(\Omega)$ be an extension of u_{ε} to be harmonic in F_{ε}. Take constants p, q such that $0 \leqq$ $p<\infty$ and $0 \leqq q \leqq \infty$. We assume that the parameters $r_{\varepsilon}, n_{\varepsilon}, c_{\varepsilon}$ and L_{ε} vary with (3) and
(4)

$$
\sup c_{\varepsilon} / r_{\varepsilon}<\infty, n_{\varepsilon} r_{\varepsilon}{ }^{N-2} \rightarrow p \quad \text { and } \quad L_{\varepsilon} / r_{\varepsilon} \rightarrow q .
$$

Then \tilde{u}_{ε} converges weakly in $H^{1}(\Omega)$ to the solution of

