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1. Introduction. Let R" be divided into an infinitely many number
of cubes C! ie N, with volume of (2¢)Y. Let B‘(r,) be a closed ball of
radius 7.(<e) set in the center of C¢ here N=3. Let 2 be a bounded
domain with smooth boundary I'. We denote by F', the union of all balls
Bi(r,) (C9) such that dist (Bi(r,), [)=e. Let 2,.=02\F.. Letyv be the outer
unit normal of 92,. For a positive number L, and a non-negative number
¢. we consider a monotone function 8. defined by (i) p.(*)=(r+c.)/L for
r<—c,, (i) (=0 for |r|<c,, (i) B.(r)=@—c)/L for r=c.. In this
paper we regard functions of L*(2.) as functions of L*£2) vanishing outside
.. For fe L*(92) we consider the boundary value problem :

(1) —du,=f a.e.in 2,
(2) a:, +B.(u)=0 a.e. on af..

v
The problem admits a unique solution u, e H*(2,) (cf. [2]). We consider
the behavior of u#. under the condition
(3) sup L, <oo, ¢,—~0,7.~0 and n,—>ow
where 7, is the number of holes of £.. Let |2 be the measure of 2. In
this paper the relation n.~|2|/(2¢)" as e—0 is very often used. Let b be a
multivalued monotone function defined by (iv) the domain D(b)={0}, (V)
b(0)=R. Replacing (2) by du./ov+b(u.,) >0 we obtain the Dirichlet bound-
ary value problem.

The behavior of the Laplacian on domains with many tiny spherical
holes, concerning the Dirichlet boundary condition, has been studied by
M. Kac [3], J. Rauch and M. Taylor [6], S. Ozawa [5], D. Cioranescu and
F. Murat [1] and other authors. Among them we shall extend the result
of Cioranescu and Murat to the direction of the monotone boundary con-
dition (2). Intuitively we have p,—b as L.—0 and ¢.—~0. Thus the above
idea may be natural. For another extension see S. Kaizu [4].

Theorem. Let u, be the solution of (1), (2) and let 7. H'(2) be an
extension of u, to be harmonic in F.. Take constants p, ¢ such that 0<
p<oo and 0Lqg< 0. We assume that the parameters r,, n,, c. and L, vary
with (3) and
(4) sup ¢./r.<oo, nr N *—>p and L./r.—q.

Then i, converges weakly in H'(2) to the solution of




