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Oo The method of integral representations is natural and very useful
in the theory of functions of several complex variables. One of the most
important integral representations was given by Henkin [4] and by Ramirez
[9]. They succeeded in constructing a holomorphic reproducing kernel for
strictly pseudo-convex domains by using the so-called Cauchy-Fantappi
formula.

On the other hand, the curvilinear wave expansion (Radon transfor-
mation) due to Sato-Kawai-Kashiwara, which is a natural generalization
of the plane wave decomposition of the -function, is a fundamental tool
in the theory of linear partial differential equations. For, by using this
expression, one can reproduce holomorphic functions which define a given
hyper (or micro) function (Kataoka [6]). Bony [2] noticed that this curvi-
linear wave expansion was constructed from the Cauchy-Fantappi kernel
by taking its boundary values to the real domain as local cohomology.

In this paper, we study the boundary values of the Henkin-Ramirez
kernel from the microlocal point of view and verify in particular that the
Henkin-Ramirez kernel is a holomorphic reproducing kernel of CR-micro-
functions (-microfunction solutions of the tangential Cauchy-Riemann
equations). We also show at the same time that the way of construction
of the Henkin-Ramirez kernel and that of Sato-Kawai-Kashiwara’s curvi-
linear wave expansion of the 3-function are essentially of the same type
from the microlocal point of view.

This simple observation makes it possible in a unified manner to con-
struct holomorphic reproducing kernels for CR-microfunctions on a cer-
tain class of CR-submanifolds. This generalization will be dealt in the
subsequent paper.

1o Let D be a strictly pseudo-convex domain in C with real analytic
boundary D D= {z p(z). 0}, where p is a real analytic defining function
such that dp(z) does not vanish on 3D. Since we are interested in the
(micro-) local properties, we only consider the Levi polynomial L, associ-
ated with p, which is an analytic family of local holomorphic support func-
tions defined by

z,)= :L


