36. Fourier Transform of a Space of Holomorphic Discrete Series

By Takaaki NOMURA Department of Mathematics, Kyoto University (Communicated by Kôsaku Yosida, M. J. A., May 13, 1985)

1. Let G be a connected non-compact real simple Lie group of matrices and K a maximal compact subgroup of G. Assume G/K is a hermitian symmetric space. Then, G/K can be realized as a Siegel domain D of type II. Let \mathfrak{h} be a Cartan subalgebra of $\mathfrak{g}=\operatorname{Lie} G$ contained in $\mathfrak{k}=$ Lie K, Δ the root system of $(\mathfrak{g}_c, \mathfrak{h}_c)$. We introduce an order in Δ compatible with the complex structure of G/K. For each K-dominant K-integral linear form Λ on \mathfrak{h}_{α} satisfying Harish-Chandra's non-vanishing condition [1, p. 612], the holomorphic discrete series Π_A of G is realized on a Hilbert space $\mathcal{H}(\Lambda)$ (see 5) of vector valued holomorphic functions on D. Let S(D)be the Šilov boundary of D. Then, one knows that S(D) is diffeomorphic to a certain nilpotent subgroup N(D) of the affine automorphisms of D. By identifying S(D) with N(D), the aim of this note is a description of the space $\mathcal{H}(\Lambda)$ by using the Fourier transform on N(D). If D reduces to a tube domain, N(D) is abelian. Since such a description in this case is found in [6], we assume from now on that D does not reduce to a tube Then, N(D) is a simply connected 2-step nilpotent Lie group. domain.

2. Let g = t + p be a Cartan decomposition of g and p_+ (resp. p_-) the sum of all root subspaces corresponding to positive (resp. negative) noncompact roots in Δ . p_{\pm} are abelian subalgebras of g_c normalized by t_c . Let P_{\pm} and K_c be analytic subgroups of G_c (Lie $G_c = g_c$) corresponding to p_{\pm} and t_c respectively. Every $x \in P_+K_cP_-$ can be expressed in a unique way as $x = \exp \zeta_+ \cdot k(x) \cdot \exp \zeta_-$ with $\zeta_{\pm} \in p_{\pm}$, $k(x) \in K_c$. We know that G is contained in $P_+K_cP_-$. Let $\{\gamma_1, \dots, \gamma_l\}$ be a maximal system of positive noncompact strongly orthogonal roots such that for each j, γ_j is the largest positive non-compact root strongly orthogonal to $\gamma_{j+1}, \dots, \gamma_l$. For every $\alpha \in \Delta$, we choose $X_{\alpha} \in g_{\alpha}$ as in Lemma 3.1 in [2, p. 257]. Then,

$$\mathfrak{a} = \sum_{1 \leq i \leq l} \mathbf{R}(X_{r_i} + X_{-r_i})$$

is a maximal abelian subspace of p with l=real rank of G. Let

(1)
$$c = \exp \pi \sum_{1 \leq j \leq l} (X_{\tau_j} - X_{-\tau_j}) / 4 \in P_+ K_c P_+$$

and $\nu = \operatorname{Ad} c$. As we are assuming that G/K does not reduce to a tube domain, there is only one possibility of positive α -root system $\Phi(\alpha)^+$ compatible with the original order in Δ through ν^* [3, p. 364]: put $2\lambda_j = \nu^*(\gamma_j)$, then

 $\Phi(\mathfrak{a})^{+} = \{\lambda_{i} + \lambda_{j}; 1 \leq j \leq i \leq l\} \cup \{\lambda_{i} - \lambda_{j}; 1 \leq j < i \leq l\} \cup \{\lambda_{i}; 1 \leq i \leq l\}.$