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Introduction. Let M be an n-dimensional complex projective mani-
fold. A finite branched covering of M is, by definition, a proper finite
holomorphic mapping " X-M of an irreducible normal complex space X
onto M. The ramification locus R--{x e Xl*:g.--*g. is not iso-
morphic) o.f and the branch locus B--(R) of are hypersurfaces of X
and M, respectively. For a point x e -(B), if y--(x) is a non-singular
point of B, then x is a non-singular point of both X and -(B). In this
case, there are coordinate systems (z,..., z) and (w,..., w) around x
and y, respectively, such that is locally given by

: (z, ..., z). (w, ..., w)=(z, ..., z_, z).
The. positive, integer e is then locally constant with respect to x. Hence,
to every irreducible component D’ of z-X(B), a positive integer e=e, is
associated and is called the ramification index of at D’. A covering

transformation of is an automorphism of X such that =z. We denote
by G the group of all covering transformations. = is said to be Galois if

G acts transitively on every fiber o . z is said to be abelian if z is Galois
and G is an abelian group.

Let D, ..., D be irreducible hypersurfaces of M. Put B=D J U
D. Let e,, ..., e be positive integers greater than 1. Consider the posi-
tire divisor D=eD+...+e,D. A finite branched covering z" X--M is
said to branch at D (resp. at at most D) if B=B (resp. BcB) and, for every
] (l<]<s), and for any irreducible component D’ o.f z-(D), the ramifica-
tion index o z at D’ is e (resp. divides e).

The purpose of this note is (1) to give a criterion or the existence of
a finite Galois (resp. abelian) covering of M which branches at D and (2)
to describe the. set of all (isomorphism classes of) finite Galois (resp. abelian)
coverings of M which branch at at most D. We follow the idea of Weil
[4].

The detail will be given in Namba [2].
1. Abelian coverings. Let M and D be as above. Consider the ad-

ditive group
Div (M, D) { (a /e)D+... + (a / e)D +E’ a e Z

for l<]<s, E’ is an (integral) divisor}
of rational divisors on M. E, E e Div (M, D) are said to be linearly equiv-
alent, EE, if E--E is a principal integral divisor on M. Let


