29. A Generalization of Gauss' Theorem on the Genera of Quadratic Forms*

By Takashi Ono
Department of Mathematics, The Johns Hopkins University and Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. a., April 12, 1985)

Let T be a torus defined over \boldsymbol{Q}. As is well known, one can associate with T the class number h_{T} independently of matrix representation of T. (See [2] p. 119 footnote and p. 120 line 17. As for basic facts on tori, see [2], [3].) When $T=R_{K / Q}\left(G_{m}\right)$, the multiplicative group K^{\times}of an algebraic number field K viewed as an algebraic group over \boldsymbol{Q}, h_{T} coincides with the ordinary class number h_{K} of the field K. Consider a short exact sequence of tori over \boldsymbol{Q} :

$$
0 \longrightarrow T^{\prime} \longrightarrow T \longrightarrow T^{\prime \prime} \longrightarrow 0 .
$$

It is natural to think of the alternating product

$$
\frac{h_{T}}{h_{r^{\prime}} h_{T^{\prime \prime}}}
$$

In his thesis Shyr considered this problem, obtained a general formula using [2], [3] and noticed, among others, that the formula is nothing but the formula of Gauss
(G)

$$
h_{K}^{+}=h_{K}^{*} 2^{t-1}
$$

when applied to $T=R_{K / Q}\left(G_{m}\right), T^{\prime \prime}=G_{m}$ and $T^{\prime}=$ the kernel of the norm map $N: T \rightarrow T^{\prime \prime}$, where $K / \boldsymbol{Q}=$ a quadratic extension, $h_{K}^{+}=$the class number of K in the narrow sense, $h_{K}^{*}=$ the number of classes in a genus and $t=$ the number of rational primes ramified in K / Q. (See [4] and [5].)

In this note, we shall report formulas of the same type as (G) for any cyclic Kummer extension K / k and clarify the relationship between ingredients of our formula and those appearing in the classical treatment of class field theory.

So, let k be an algebraic number field of degree n_{0} over \boldsymbol{Q} which contains a primitive n-th root of $1(n \geqq 2)$ and K / k be a cyclic extension of degree n. Consider tori $T_{0}=R_{K / k}\left(G_{m}\right), T_{0}^{\prime \prime}=G_{m}$ over k and the exact sequence over k :

$$
0 \longrightarrow T_{0}^{\prime} \longrightarrow T_{0} \longrightarrow T_{0}^{\prime \prime} \longrightarrow 0
$$

where $T_{0}^{\prime \prime}$ is the kernel of the norm map $N: T_{0} \rightarrow T_{0}^{\prime \prime}$. Applying $R_{k / Q}$, we obtain the exact sequence over \boldsymbol{Q} :

$$
0 \longrightarrow T^{\prime} \longrightarrow T \longrightarrow T^{\prime \prime} \longrightarrow 0
$$

where $T=R_{k / Q}\left(T_{0}\right)=R_{K / Q}\left(G_{m}\right), T^{\prime \prime}=R_{k / Q}\left(G_{m}\right)$ and $T^{\prime}=R_{k / Q}\left(T_{0}^{\prime}\right)$. We have h_{T} $=h_{K}, h_{T^{\prime \prime}}=h_{k}$. As for the Tamagawa numbers, we have $\tau(T)=\tau\left(T^{\prime \prime}\right)=1$ and $\tau\left(T^{\prime}\right)=\tau_{k}\left(T_{0}^{\prime}\right)=n$ since K / k is cyclic of degree n. (See [3] Corollary to
*) Dedicated to John Tate for his 60th birthday.

