28. On Semi-idempotents in Group Rings

By W. B. VASANTHA

The Ramanujan Institute, University of Madras

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1985)

After Gray [1], an element $\alpha \neq 0$ of a ring R is called *semi-idempotent* if and only if α is not in the proper two-sided ideal of R generated by $\alpha^2 - \alpha$, i.e. $\alpha \notin R(\alpha^2 - \alpha)R$ or $R = R(\alpha^2 - \alpha)R$. 0 is also counted among semi-idempotents. It is obvious that idempotent element is semi-idempotent. Throughout this note, K denotes a (commutative) field. We are concerned here with the group ring R = KG over a group G. § 1 contains some propositions of general nature. In § 2 we prove a theorem for the case where G is abelian.

§ 1. Trivial and non-trivial semi-idempotents. In the following, we consider the group ring R = KG, $G \neq 1$. It is easily seen that for $k \in K$ the element $k \cdot 1 \in R$ is semi-idempotent. Semi-idempotents of this form are called *trivial*, other semi-idempotents non-trivial. The subset $\{\sum_{g \in G} a_g g; \sum_{g \in G} a_g = 0\}$ forms a proper two-sided ideal of R, called the augmentation ideal w(R) of R (Passman [2]).

Proposition 1. The group ring R = KG $(G \neq 1)$ contains non-trivial semi-idempotents.

Proof. Any element g of $G-\{1\}$ is non-trivial semi-idempotent because $g \notin w(R)$, $g^2-g \in w(R)$.

Proposition 2. If H is a subgroup of G of finite order n, $\alpha = (\sum_{h \in H} h) + 1$ is a non-trivial semi-idempotent.

Proof. We have $\alpha^2 - \alpha = (n+1) \sum_{h \in H} h$. If n+1=0 in K, α is idempotent. If $n+1\neq 0$ in K, we have $R(\alpha^2 - \alpha)R = R(\sum_{h \in H} h)R$, so that $\alpha \in R(\alpha^2 - \alpha)R$ implies $1 = \alpha - \sum_{h \in H} h \in R(\alpha^2 - \alpha)R$ whence $R = R(\alpha^2 - \alpha)R$. Thus α is semi-idempotent.

Proposition 3. If α is non-trivial idempotent of R=KG (i.e. $\alpha \in R$, $\alpha^2=\alpha$ and $\alpha \notin \{0,1\}$), $\alpha+1$ is semi-idempotent.

Proof. Put $\beta = \alpha + 1$. Then we have $\beta^2 - \beta = \alpha \beta = \alpha^2 + \alpha = 2\alpha$. If 2 = 0 in K, β is idempotent. If $2 \neq 0$ in K, we have $R(\beta^2 - \beta)R = R\alpha R$. Therefore $\beta \in R(\beta^2 - \beta)R$ implies $\alpha + 1 \in R\alpha R$, $R(\beta^2 - \beta)R = R$. Thus β is semi-idempotent.

§ 2. Abelian case. Now we consider the case where R = KG is a group ring over an abelian group G. Then every ideal in R is of course two-sided.

Proposition 4. Let R=KG be a group ring over an abelian group G. If α (\neq 0) is semi-idempotent but not a unit in R, then $\alpha-1$ is not a unit in R.

Proof. Suppose $\alpha-1$ be a unit in R. Then there is an element β of