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1. Statement of result. Let/2 be a domain in R and let (M, g) be a
Riemannian manifold of dimension m. We assume that M is isometrically
embedded in Euclidean space R. The equation of harmonic maps from
t9 into M is given as follows.

(1.1) u’(x)=, A(x)(Du(x), Du(x)) o--1, ..., k
i=l

where Au((., .) is the second fundamental form of M at u(x). This is the
Euler-Lagrange equation of the energy functional

E(u)-[ e(u)(x)dx where e(u)(x) -!Du(x)12.(1.2)

(Hereafter, we denote e(u)(x) simply as e(u).)
The purpose o this article is to give a regularity result for a certain

class of weak solutions of (1.1). H(9, R) denotes the Sobolev space of
order I from tO to R. H(9, M) is the subset of H(9, R) consisting of
maps hving image almost everywhere in M and L(tg, M) is defined
similarly.

Definition 1.1 ([8]). A map u e H(9, M) L(9, M) is called a station-
ary map if the following conditions, are satisfied.

(1) For any ] e C(9, R) we have

(1.3) =1 =1’ (Du"D+A:(Du’ Du))dx=O"

(Then, u is. called a weakly harmonic map.)
(2) For each one-parameter family {Ft} of diffeomorphisms of tO which

are equal to the identity outside a compact set of tO and with F0= id., we
have
(1.4) d/ dr)E(u rt) It =0 0.

Remark 1.2. It is known that continuous harmonic maps are smooth
stationary maps (see [8]).

The main result is as follows.

Theorem 1.3. Let B be the unit ball in R (n>=3) with the center at the
origin and let (M, g) be a Riemannian manifold of dimension m. Let
u e H(B, M) L(B, M) be a stationary map. Suppose that u is of class

C in B--{0} and the integral [BIDUln dx i8 finite. Then, u is extended as

a smooth harmonic map from B to M.
Remark 1.4. (1) In case n=2, isolated singular points are removable

or each weakly harmonic map ([7, Theorem. 3.6]).


