# 25. A Study of a Certain Non-Conventional Operator of Principal Type 

By Atsushi Yoshikawa<br>Department of Mathematics, Hokkaido University<br>(Communicated by Kôsaku Yosida, m. J. A., March 12, 1984)

Introduction. The purpose of this note is to report some of the properties of the first order differential operator :

$$
\begin{equation*}
B^{I}=D_{t}+i\left(t^{2} / 2+x\right) D_{y} \tag{1}
\end{equation*}
$$

$D_{t}=-i \partial / \partial t, D_{v}=-i \partial / \partial y$, in a neighborhood of the origin in $R^{3}$. Its principal symbol is given by $b^{I}=\tau+i\left(t^{2} / 2+x\right) \eta$, if $(\tau, \xi, \eta)$ denotes the dual variables of $(t, x, y)$. Observe then $\left\{b^{I}, \bar{b}^{I}\right\}=-2 i t \eta$. Let $S^{ \pm}$ $=\left\{(t, x, y, \tau, \xi, \eta) ; \tau=0, t^{2} / 2+x=0, \pm t_{\eta}<0\right\}$ and $S_{1}=\{(t, x, y, \tau, \xi, \eta) ;$ $\tau=\eta=0, \xi \neq 0\}$. The characteristic set $S$ of $B^{I}$ is connected and consists of two cones $S_{1}$ and $S_{2}=S^{+} \cup S^{-} \cup S^{0}$, where $S^{0}=\{(0,0, y, 0, \xi, \eta)$; $\eta \neq 0\}$. A noteworthy fact is that $\left\{b^{I}, \bar{b}^{I}\right\} / 2 i$ changes sign on $S_{2}$ near $S^{0}$. In this sense, the operator $B^{r}$ does not microlocally fall in the class of operators conventionally studied ([2], [3], [6]). However, we can show the following

Theorem 1. Let
(2) $\quad B^{I} u=f, \quad u \in \mathscr{D}^{\prime}\left(\boldsymbol{R}^{3}\right), \quad f \in \mathcal{E}^{\prime}\left(\boldsymbol{R}^{3}\right)$, with supp $f$ in a small neighborhood of the origin. If $\left(t_{0}, x_{0}, y_{0}, \tau_{0}, \xi_{0}\right.$, $\left.\eta_{0}\right) \in W F(u) \backslash W F(f), \eta_{0} \neq 0$, is in a conic neighborhood $\Gamma$ of $(0,0,0,0,0$, $\left.\eta_{0} /\left|\eta_{0}\right|\right)$, then $\tau_{0}=0$ and $\left(t_{0}, x_{0}, y_{0}, 0, \xi_{0}, \eta_{0}\right) \in S^{+} \cup S^{0}$.

Note that the general theory [4] assures $W F(u) \backslash W F(f) \subset S$ so that $\tau_{0}=0$ is immediate. A proof of Theorem 1 will be given in $\S 1$. We will considerably make use of the particular form of the operator $B^{I}$. In this respect, we also include here a result on the equation $B^{I} u=0$. Let $u \in \mathscr{D}^{\prime}\left(\boldsymbol{R}^{3}\right)$. Introduce the quantities:

$$
\begin{array}{ll}
t^{*}(x, y ; u)=\sup \{t ;(t, x, y) \in \operatorname{supp} u\}, & (x, y) \in \boldsymbol{R}^{2}, \\
y^{*}(x, t ; u)=\sup \{y ;(t, x, y) \in \operatorname{supp} u\}, & (x, t) \in \boldsymbol{R}^{2},
\end{array}
$$

adopting the convention $\sup \phi=-\infty$. Replacing sup by inf, we define $t_{*}(x, y ; u)$ and $y_{*}(x, t ; u)$ with $\inf \phi=+\infty$. Note $t^{*}(x, y ; u)$ and $y^{*}(x, t ; u)$ (resp. $t_{*}(x, y ; u)$ and $y_{*}(x, t ; u)$ ) are upper (resp. lower) semicontinuous.

Theorem 2. Let $u \in \mathscr{D}^{\prime}\left(R^{3}\right)$ satisfy $B^{I} u=0$. Assume one of the quantities $t^{*}(x, y ; u), y^{*}(x, t ; u),-t_{*}(x, y ; u)$ and $-y_{*}(x, t ; u)$ take a finite local maximum. Then $u$ vanishes identically.

A proof will be given in § 2.
Before ending Introduction, we briefly indicate our motivation in

