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1o Summary. We can solve the Toda equation with two time
variables
(1.1) XY log t=t+t_/t
(X=3/3x, Y=3/3y, t=t(x, y)) using solutions of the telegraph equa-
tion
(1.2) (XY+1)u= 0.
Rational solutions, Bessel function solutions and solutions which are ex-
pressed by hypergeometric functions with two variables are obtained.

2. B/icklund transformation. When tn satisfies (1.1)
(2.1) r=XY log t, Sn= Y log t_/t
satisfies
(2.2) Yr=r(Sn--Sn+l), Xsn--r_--r.
Let us introduce the ollowing triple ot partial differential operators
(2.3) Mn=XY+sn+X-r, X=--r;X, Y=Y+sn+I.
Define
(2.4) T={u M0u0=0, Un+=YnU (n>O), u_=Xun (n0)}.
We can show

Theorem 2.1 (Bcklund transformation). If u e T then we have
Mu=O, u+=Yu, U_=XUn (n=0, ___1, +2, ...) and vn--Utn sat-
isfies the To.da equatio.n (1.1).

We can obtain all solutions of the Toda equation (2.2) with sepa-
rated orm r=f(n)g(x, y). f(n) must be a polynomial in n of order
2 and our solutions are

( ) r=(n--)(n-)a’(x)b’(y)(a(x)/b(y))-,
(ii) r=(n-a)a(x)b(y), (iii) r=a(x)b(y),

where a and are arbitrary constants and a(x) and b(y) are arbitrary
unctions. In this note we. only treat the Biicklund transforms o the
simplest solutions (iii).

3. One.parameter groups on T. No loss ot generality we can
assume, that a(x)--b(y)=l. In this case we have
(3.1) t=e, r=l, s=0,
(3.2) M=M=XY+I, X=-X, Y=Y.
We can determine all o the first order partial differential operators
D=a(x, y)X/b(x, y)Y+c(x, y) which commute with M (modulo M).


