22. On the Telegraph Equation and the Toda Equation

By Yoshinori Kametaka
Department of Applied Mathematics, Faculty of Engineering, Ehime University
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1984)

§ 1. Summary. We can solve the Toda equation with two time variables
(1.1) $\quad X Y \log t_{n}=t_{n+1} t_{n-1} / t_{n}^{2}$
($X=\partial / \partial x, Y=\partial / \partial y, t_{n}=t_{n}(x, y)$) using solutions of the telegraph equation
(1.2)
$(X Y+1) u_{n}=0$.
Rational solutions, Bessel function solutions and solutions which are expressed by hypergeometric functions with two variables are obtained.
§2. Bäcklund transformation. When t_{n} satisfies (1.1)

$$
\begin{equation*}
r_{n}=X Y \log t_{n}, \quad s_{n}=Y \log t_{n-1} / t_{n} \tag{2.1}
\end{equation*}
$$

satisfies
(2.2)

$$
Y r_{n}=r_{n}\left(s_{n}-s_{n+1}\right), \quad X s_{n}=r_{n-1}-r_{n} .
$$

Let us introduce the following triple of partial differential operators
(2.3) $\quad M_{n}=X Y+s_{n+1} X+r_{n}, \quad X_{n}=-r_{n}^{-1} X, \quad Y_{n}=Y+s_{n+1}$.

Define
(2.4) $T=\left\{u_{n} ; M_{0} u_{0}=0, u_{n+1}=Y_{n} u_{n}(n \geqslant 0), u_{n-1}=X_{n} u_{n}(n \leqslant 0)\right\}$.

We can show
Theorem 2.1 (Bäcklund transformation). If $u_{n} \in T$ then we have $M_{n} u_{n}=0, u_{n+1}=Y_{n} u_{n}, u_{n-1}=X_{n} u_{n}(n=0, \pm 1, \pm 2, \cdots)$ and $\tau_{n}=u_{n} t_{n}$ satisfies the Toda equation (1.1).

We can obtain all solutions of the Toda equation (2.2) with separated form $r_{n}=f(n) g(x, y) . \quad f(n)$ must be a polynomial in n of order 2 and our solutions are
(i) $\quad r_{n}=(n-\alpha)(n-\beta) a^{\prime}(x) b^{\prime}(y)(\alpha(x)+b(y))^{-2}$,
(ii) $r_{n}=(n-\alpha) a(x) b(y)$,
(iii) $r_{n}=a(x) b(y)$,
where α and β are arbitrary constants and $a(x)$ and $b(y)$ are arbitrary functions. In this note we only treat the Bäcklund transforms of the simplest solutions (iii).
§3. One-parameter groups on T. No loss of generality we can assume that $a(x)=b(y)=1$. In this case we have

$$
\begin{gather*}
t_{n}=e^{x y}, \quad r_{n}=1, \quad s_{n}=0, \tag{3.1}\\
M_{n}=M=X Y+1, \quad X_{n}=-X, \quad Y_{n}=Y
\end{gather*}
$$

We can determine all of the first order partial differential operators $D=a(x, y) X+b(x, y) Y+c(x, y)$ which commute with M (modulo M).

