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1. Introduction. Let G be a compact, connected, simply con-
nected, simple Lie group. It is well known 7c(G)-O and rc,(G)--Z.
Therefore BG, the classifying space of G, is 3-connected and

7r (BG) H (BG) H(BG) -Z.
Represent a generator x4 o H4(BG) by a map a" BG---K(Z, 4) and
denote its homotopy fibre by BG. Let p be an odd prime and denote
the sequence (p-,..., p, 1) by I(k). As is well known

H*(K(Z, 3) Z/p.)-Z/p[()u ]l](R)A(()u k_0)
where, u is a generator o H(K(Z, 3);Z/p)Z/p. The purpose of
this paper is to determine H*(BG Z/p) or any classical type G. The
result is

Theorem 1.1. For any classical type G, there exists an integer
h--h(G, p) such that as an algebra

H*(BG Z/p)-H*(BG Z/p)/(x, (’x, .,
where R is a subalgebra of H*(K(Z, 3);Z/p) generated by {fl()u
k 1) U (()u k_h). (For h(G, p) see 5.)

The rood 2 cohomology of BG or G=SU(n) or Sp(n) is determined
in 4.

2. Some algebraic preparations. Let V be an n-dimensional
vec+/-or space over F. Consider a quadratic form Q(x) on V. It can
be thought as an element of degree 2 in S(V*), the symmetric algebra
of the dual space of V. Let B(x, y) be the associated bilinear orm of
Q (c. Chap. 4, 1.1 of [5]) and let h be the, codimension o the maximal
dimensional Q-isotropic subspace of V (cf. Chap. 4, 1.3 of [5]).

Theorem 2.1. The sequence
( * ) Q(x), B(x, x), ..., B(x, x-’)
is a regular sequence in S(V*).

For the proof of the above theorem, we look at Var J, the algebraic
variety defined by J in V(R)9, where. J is the ideal of S(V*) generated
by (*) and 2 is an algebraically closed extension of F of infinite
transcendence degree. In fact

Var J [ W(R)t2
where W ranges all maximal Q-isotropic subspaces. Theorem 2.1


