Cohomology mod p of the 4-Connective Fibre Space of the Classifying Space of Classical Lie Groups

By Masana HARADA and Akira KONO Department of Mathematics, Kyoto University

(Communicated by Heisuke HIRONAKA, M. J. A., Feb. 13, 1984)

§1. Introduction. Let G be a compact, connected, simply connected, simple Lie group. It is well known $\pi_2(G)=0$ and $\pi_3(G)=Z$. Therefore BG, the classifying space of G, is 3-connected and $\pi_4(BG)\cong H_4(BG)\cong H^4(BG)\cong Z$.

Represent a generator x_4 of $H^4(BG)$ by a map $\sigma: BG \to K(Z, 4)$ and denote its homotopy fibre by $B\tilde{G}$. Let p be an odd prime and denote the sequence $(p^{k-1}, \dots, p, 1)$ by I(k). As is well known

 $H^*(K(Z,3); Z/p) \cong Z/p[\beta \mathcal{P}^{I(k)}u_3; k \ge 1] \otimes A(\mathcal{P}^{I(k)}u_3; k \ge 0)$ where u_3 is a generator of $H^s(K(Z,3); Z/p) \cong Z/p$. The purpose of this paper is to determine $H^*(B\tilde{G}; Z/p)$ for any classical type G. The result is

Theorem 1.1. For any classical type G, there exists an integer h=h(G, p) such that as an algebra

 $\begin{aligned} H^*(B\widetilde{G} ; Z/p) &\cong H^*(BG ; Z/p)/(x_4, \mathcal{P}^{I(1)}x_4, \cdots, \mathcal{P}^{I(h-1)}x_4) \otimes R_h, \\ where \ R_h \ is \ a \ subalgebra \ of \ H^*(K(Z,3) ; Z/p) \ generated \ by \ \{\beta \mathcal{P}^{I(k)}u_3 ; k \geq 1\} \cup \{\mathcal{P}^{I(k)}u_3 ; k \geq h\}. \quad (\text{For } h(G,p) \ \text{see } \S \ 5.) \end{aligned}$

The mod 2 cohomology of $B\tilde{G}$ for G=SU(n) or Sp(n) is determined in § 4.

§2. Some algebraic preparations. Let V be an n-dimensional vector space over F_p . Consider a quadratic form Q(x) on V. It can be thought as an element of degree 2 in $S(V^*)$, the symmetric algebra of the dual space of V. Let B(x, y) be the associated bilinear form of Q (cf. Chap. 4, 1.1 of [5]) and let h be the codimension of the maximal dimensional Q-isotropic subspace of V (cf. Chap. 4, 1.3 of [5]).

Theorem 2.1. The sequence (*) $Q(x), B(x, x^p), \dots, B(x, x^{p^{h-1}})$ is a regular sequence in $S(V^*)$.

For the proof of the above theorem, we look at Var J, the algebraic variety defined by J in $V \otimes \Omega$, where J is the ideal of $S(V^*)$ generated by (*) and Ω is an algebraically closed extension of F_p of infinite transcendence degree. In fact

$$\operatorname{Var} J = \cup W \otimes \Omega$$

where W ranges all maximal Q-isotropic subspaces. Theorem 2.1